0115 966 7955 Today's Opening Times 10:00 - 20:00 (BST)
Place an Order
Instant price

Struggling with your work?

Get it right the first time & learn smarter today

Place an Order
Banner ad for Viper plagiarism checker

Manufacturing Processes of Bleach

Disclaimer: This work has been submitted by a student. This is not an example of the work written by our professional academic writers. You can view samples of our professional work here.

Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of UK Essays.

Published: Wed, 10 Jan 2018

Introduction

Household Bleach is one of the most helpful tools in most American households. There are two main classes of household bleach: chlorine bleaches and non-chlorine bleaches. All of these bleaches are in a class of chemicals known as oxidative agents, meaning that they cause a chemical reaction called oxidation when they come into contact with certain stains, certain germs or other organisms, and sometimes clothing dyes.

Bleach is a very useful chemical, both around the house and for large scale use. You can use bleach to remove stains on clothing or to whiten your laundry. It’s used to disinfect surfaces, too, especially in the kitchen and bathroom. You may have tried bleach to remove mold and mildew. Hospital personnel use bleach as a disinfectant, hotels use bleach to clean and disinfect bed linens and surfaces, and restaurants disinfect food preparation surfaces with chlorine bleach. People use chlorine in swimming pools to keep the water clean and raise the pH, and in much smaller concentrations to help keep municipal water supplies free of harmful organisms. Companies sometimes add chlorine bleach to industrial wastewater to reduce odor, and chlorine is used by the glass, chemical, pharmaceutical, textile, agriculture, paint and paper industries. With its many uses, bleach its a very familiar product to most people.

While the word “bleach” entered the English language around the year 1050, bleach containing sodium hypochlorite was first manufactured in the U.S. in 1913, for use as an institutional disinfectant and a water treatment. Before that, chemicals such as borax, ammonia and lye were the most common bleaches in the U.S., and bleaches made using chlorine were generally too expensive to manufacture until the 20th century. Clorox Chemical, later called the Clorox Company, first gave samples of bleach to consumers for household use in 1922 [source: American Chemistry Council]. Since chlorine bleach was faster and more effective than the bleaches people had been using, it quickly became the most popular household bleach. Today, when we say, “bleach,” we usually mean chlorine bleach. So what exactly is chlorine bleach, and how does it work?

Humans have been whitening fabrics for centuries; ancient Egyptians, Greeks, and Romans bleached materials. As early as 300 B.C., soda ash, prepared from burned seaweed, was used to clean and whiten cloth. During the Middle Ages, the Dutch perfected the bleaching of fabrics in a process called crofting, whereby fabrics were spread out in large fields for maximum sunlight exposure. Textile mills as far away as Scotland shipped their material to the Netherlands for this bleaching. The practice quickly spread throughout Europe, and bleaching fields were documented in Great Britain as early as 1322. In 1728 a bleaching company using Dutch methods went into business in Galloway, Scotland. In this process, the fabrics were soaked in a lye solution for several days, then “bucked,” or washed clean. The fabrics were then spread out on the grass for weeks at a time. This process was repeated five or six times until the desired whiteness was achieved. Next, the fabric was treated with sour milk or buttermilk, and again bucked and crofted. This method was lengthy and tedious, and it monopolized large tracts of land that could have been used for farming.

Late in the 18th century, scientists discovered a chemical that had the same effect as crofting, but yielded much quicker results. In 1774, Swedish chemist Karl Wilhelm Scheele discovered the chemical element chlorine, a highly irritating, green-yellowish gaseous halogen. In 1785, the French scientist Claude Berthollet found that chlorine was an excellent whitening agent in fabrics. Some mill operators attempted to expose their fabrics to chlorine gas, but the process was so cumbersome and the fumes so strong that these attempts were soon abandoned.

Near Paris, in the town of Javel, Berthollet began a small facility for the manufacture of a new product called “Eau de Javelle.” The bleaching powder consisted of potash (soda ash) which had absorbed chlorine gas. In 1799, another bleaching powder was invented by Scottish chemist Charles Tennant. In the early years of the Industrial Revolution, his patented lime powder was widely used to whiten a variety of fabrics and paper products. To make the bleaching powder, slaked lime (lime treated with water) was spread thinly over the concrete or lead floor of a large room. Chlorine gas was pumped into the room to be absorbed by the lime. Though an effective whitener, the powder was chemically unstable. It was

The raw materials for making household bleach are chlorine, caustic soda, and water. The chlorine and caustic soda are produced by putting direct current electricity through a sodium chloride salt solution in a process called electrolysis.

commonly used until around World War I, when liquid chlorine and sodium hypochlorite solutions-the forerunners of modern household bleach-were introduced. About this time, researchers found that injecting salt water with electrical current broke down the salt (sodium chloride) molecules and produced a compound called sodium hypochlorite. This discovery enabled the mass production of sodium hypochlorite, or chlorine, bleach.

Types of Bleach

Today, bleach is found in nearly every household. It whitens fabrics and removes stains by a chemical reaction that breaks down the undesired color into smaller particles that can be easily removed by washing. The two types of household bleach are chlorine bleach and peroxide bleach. Peroxide bleach was introduced in the 1950s. Though it helps to remove stains, especially in higher wash temperatures, it will not bleach most colored materials and does not weaken fabrics, as does sodium hypochlorite bleach. Peroxide bleach does not disinfect and is commonly added to laundry detergents which are advertised as color-safe. It also has a longer shelf life than chlorine bleach. Peroxide bleach is more commonly used in Europe, where washing machines are manufactured with inner heating coils that can raise the water temperature to the boiling point.

The more common form of household bleach in the U.S. is chlorine bleach. It is most effective in removing stains and disinfecting fabrics. Chlorine bleach is cheap to manufacture and effective in both warm and hot wash temperatures. However, it has strong chemical properties which can weaken textile fibers.

The disinfecting properties of chlorine bleach can also be useful outside the laundry. Chlorine bleach disinfects drinking water where groundwater contamination has occurred, as it is a powerful germicide. It was first used to sanitize drinking water in New York City’s Croton Reservoir in 1895, and is approved by the government for sanitizing equipment in the food industry. In recent years, bleach has been promoted by community health activists as a low-cost method of disinfecting the needles of intravenous drug users.

Raw Materials

The raw materials for making household bleach are chlorine, caustic soda, and water. The chlorine and caustic soda are produced by putting direct current electricity through a sodium chloride salt solution in a process called electrolysis. Sodium chloride, common table salt, comes from either mines or underground wells. The salt is dissolved in hot water to form a salt solution, which is then treated for impurities before it is reacted in the electrolytic cell.

The Manufacturing Process

Preparing the components

1 Caustic soda is usually produced and shipped as a concentrated 50% solution. At its destination, this concentrated solution is diluted with water to form a new 25% solution.

2 Heat is created when the water dilutes the strong caustic soda solution. The diluted caustic soda is cooled before it is reacted.

The chemical reaction

3 Chlorine and the caustic soda solution are reacted to form sodium hypochlorite bleach. This reaction can take place in a batch of about 14,000 gallons or in a continuous reactor. To create sodium hypochlorite, liquid or gaseous chlorine is circulated through the caustic soda solution. The reaction of chlorine and caustic soda is essentially instantaneous.

Cooling and purifying

4 The bleach solution is then cooled to help prevent decomposition.

5 Often this cooled bleach is settled or filtered to remove impurities that can discolor the bleach or catalyze its decomposition.

Shipping

6 The finished sodium hypochlorite bleach is shipped to a bottling plant or bottled on-site. Household-strength bleach is typically 5.25% sodium hypochlorite in an aqueous solution.

Quality Control

In the bleach manufacturing facility, the final sodium hypochlorite solution is put through a series of filters to extract any left-over impurities. It is also tested to make certain that it contains exactly 5.25% sodium hypochlorite. Safety is a primary concern at manufacturing plants because of the presence of volatile chlorine gas. When the chlorine is manufactured outside the reactor facility, it travels in liquid form in specially designed railroad tank cars with double walls that will not rupture in the event of a derailment. On arrival at the plant, the liquid chlorine is pumped from the tank cars into holding vat.. As a safety measure, the tank cars have shutoff valves that work in conjunction with a chlorine detection system. In the event of a chlorine leak, the detection system triggers a device on the tank that automatically stops the transmission of the liquid in 30 seconds.

Inside the facility, chlorine vats are housed in an enclosed area called a car barn. This enclosed room is equipped with air “scrubbers” to eliminate any escaped chlorine gas, which is harmful to humans and the environment. The vacuum-like scrubber inhales any chlorine gas from the enclosed area and injects it with caustic soda. This turns it into bleach, which is incorporated into the manufacturing process. Despite these precautions, safety and fire drills are scheduled regularly for plant personnel.

Special Considerations in Packaging

Household sodium hypochlorite bleach was introduced to Americans in 1909 and sold in steel containers, then in glass bottles. In the early 1960s, the introduction of the plastic jug brought a cheaper, lighter, and nonbreakable packaging alternative. It reduced transportation costs and protected the safety of workers involved in its shipping and handling. Additionally, the thick plastic did not permit ultraviolet light to reach the bleach, which improved its chemical stability and effectiveness. In recent years, how-ever, plastic containers have become an environmental concern because of the time it takes the material to decompose in a landfill. Many companies that depend on plastic packaging, including bleach manufacturers, have begun to reduce the amount of plastic in their packaging or to use recycled plastics. In the early 1990s, Clorox introduced post-consumer resins (PCR) in its packaging. The newer bottles are a blend of virgin high-density polyethylene (HDPE) and 25% recycled plastic, primarily from clear milk jug-type bottles.

Consumer Safety

The bleach manufacturing industry came under fire during the 1970s when the public became concerned about the effects of household chemicals on personal health. Dioxin, a carcinogenic byproduct of chemical manufacturing, is often found in industrial products used to bleach paper and wood. In its final bottled form, common sodium hypochlorite bleach does not contain dioxins because chlorine must be in a gaseous state for dioxins to exist. However, chlorine gas can form when bleach comes into contact with acid, an ingredient in some toilet-bowl cleaners, and the labels on household bleach contain specific warnings against such combination.

In addition to the danger of dioxins, consumers have also been concerned about the toxicity of chlorine in sodium hypochlorite bleach. However, the laundry process deactivates the potentially toxic chlorine and causes the formation of salt water. After the rinse water enters the water system through the household drain, municipal water filtration plants remove the remaining traces of chlorine.


To export a reference to this article please select a referencing stye below:

Reference Copied to Clipboard.
Reference Copied to Clipboard.
Reference Copied to Clipboard.
Reference Copied to Clipboard.
Reference Copied to Clipboard.
Reference Copied to Clipboard.
Reference Copied to Clipboard.

Request Removal

If you are the original writer of this essay and no longer wish to have the essay published on the UK Essays website then please click on the link below to request removal:


More from UK Essays