The mystery of box 9
Introduction
Box 9 encompassed a complete skull, articulated pelvis and right femur, all from a single, unknown individual. Sex, age, ethnicity, height and pathology was determined using both metric and morphological forensic anthropological methods. Metric analysis is advantageous because it’s easier to learn and reproduce, relies on standard landmarks, and results in fewer indeterminate conclusions (Giles, 1970). However, disadvantages include the need for unfragmented bones and population-specific formulae. Therefore, if remains are burned or fragmented, a qualitative method is needed, however, these can be subjective and lack of consistency (Giles, 1970). Alongside this, facial reconstruction and DNA profiling provided further evidence to help identify this individual.
Pathological conditions
Pathology is important to consider before determining sex, age and ethnicity to prevent bias. This individual has many common characteristics of acromegaly- a rare disorder caused by over-production of growth hormone from the pituitary gland, these include an enlarged skull, protruding mandible, mispositioned teeth and excessive bone outgrowth around sutures (Chapman, 2017). Although these features could also indicate gigantism, this individual’s pelvis and femur are within normal ranges, suggesting the condition was acquired in adulthood which only occurs in acromegaly patients (NIDDK, 2012). Acromegaly progression is often linked to type 2 diabetes, hypertension, osteoarthritis and severe muscle weakness, which, if left untreated, could lead to premature death- it may have also caused this individual to have a stooped posture and frequent cardiovascular complications (Chapman, 2017). As the pelvis and femur have no signs of disease or damage, it’s unlikely this individual had osteoarthritis, however, absence of organs and muscles means other conditions cannot be ruled out as cause of death.
Get Help With Your Essay
If you need assistance with writing your essay, our professional essay writing service is here to help!
Find out more about our Essay Writing Service
Sex
Ferembach’s (1980) qualitative method for skull sex determination indicated most features were hyper-male (see figure 1), however, a rough but medium thickness zygomatic process and a somewhat flexed posterior border of the mandibular ramus showed neither male or female characteristics. Despite this, overall, one can predict that this individual was male.
4
3
5
1
2
6
Figure 1 shows features of the cranium and mandible that indicated hyper-male traits using Ferembach’s (1980) method. 1: prominent glabella, 2: vertical mastoid process, 3: blunted supraorbital ridges, 4: inclined forehead, 5: quadrectangular orbitals and 6: robust, broad mandible.
Alternatively, Giles and Elliot’s (1963) discrimination function is a quicker method with similar accuracy of 86.6%. Using formula 1, outlined in Appendix D, a value of 2994.9 is obtained, also suggesting this individual was male, increasing reliability of conclusions. Krogman (1962) found that sexing the skull alone is 90% accurate, however, sexing the skull and pelvis together is 98% accurate. Thus, to increase accuracy of final conclusions, the pelvis and femur need to be analysed too.
The pelvis is the best indicator of sex due to its adaptation for childbirth in females. Phenice’s (1969) morphological technique uses 3 pubis characteristics to determine sex- one of which is the ventral arc, said to be 96% accurate in determining sex (Sutherland and Suchey, 1991). Unfortunately, this technique produced mixed results for this pelvis, therefore, alternatively, Albanese’s (2003) metric analysis, outlined in Appendix B, uses the whole pelvis and femur to increase accuracy and reduce subjectivity of sex determination. Using model 1, which has 98% accuracy, a value of 0.26 is obtained, suggesting this individual was female. Yet, model 2 and 3, which have 97% and 96.3% accuracy respectively, obtain 0.62 and 0.94, clearly indicating male. Although model 2 and 3 have lower accuracy, their matching outcome increases confidence and validity, allowing one to conclude this individual was male.
Bass (1978) discovered that a femur head diameter >47.5mm indicates male while <42.5mm indicates female. Unfortunately, as this individual’s is only 44.85mm, sex cannot be determined. Nevertheless, height can be estimated using Trotter’s formula (1970) in figure 2. As femur length is 47.9cm, height is estimated at 175.4 cm ±3.27.