Print Email Download

Paid Writing Services

More Free Content

Get Your Own Essay

Order Now

Instant Price

Search for an Essay


Advantages and Limitations of Neural Network

There are many advantages and limitations to neural network analysis and to discuss this subject properly we would have to look at each individual type of network, which isn't necessary for this general discussion. In reference to backpropagational networks however, there are some specific issues potential users should be aware of.

The advantage of neural networks over conventional programming lies on their ability to solve problems that do not have an algorithmic solution or the available solution is too complex to be found. Neural networks are well suited to tackle problems that people are good at solving, like prediction and pattern recognition (Keller). Neural networks have been applied within the medical domain for clinical diagnosis (Baxt:95), image analysis and interpretation (Miller:92, Miller:93), signal analysis and interpretation, and drug development (Weinstein:92). The classification of the applications presented below is simplified, since most of the examples lie in more than one category (e.g. diagnosis and image interpretation; diagnosis and signal interpretation). Depending on the nature of the application and the strength of the internal data patterns you can generally expect a network to train quite well. This applies to problems where the relationships may be quite dynamic or non-linear. ANNs provide an analytical alternative to conventional techniques which are often limited by strict assumptions of normality, linearity, variable independence etc. Because an ANN can capture many kinds of relationships it allows the user to quickly and relatively easily model phenomena which otherwise may have been very difficult or imposible to explain otherwise.

Future Enhancements

Because gazing into the future is somewhat like gazing into a crystal ball, so it is better to quote some "predictions". Each prediction rests on some sort of evidence or established trend which, with extrapolation, clearly takes us into a new realm.

Prediction 1:

Neural Networks will fascinate user-specific systems for education, information processing, and entertainment. "Alternative ralities", produced by comprehensive environments, are attractive in terms of their potential for systems control, education, and entertainment. This is not just a far-out research trend, but is something which is becoming an increasing part of our daily existence, as witnessed by the growing interest in comprehensive "entertainment centers" in each home.

This "programming" would require feedback from the user in order to be effective but simple and "passive" sensors (e.g fingertip sensors, gloves, or wristbands to sense pulse, blood pressure, skin ionisation, and so on), could provide effective feedback into a neural control system. This could be achieved, for example, with sensors that would detect pulse, blood pressure, skin ionisation, and other variables which the system could learn to correlate with a person's response state.

Prediction 2:

Neural networks, integrated with other artificial intelligence technologies, methods for direct culture of nervous tissue, and other exotic technologies such as genetic engineering, will allow us to develop radical and exotic life-forms whether man, machine, or hybrid.

Prediction 3:

Neural networks will allow us to explore new realms of human capabillity realms previously available only with extensive training and personal discipline. So a specific state of consiously induced neurophysiologically observable awareness is necessary in order to facilitate a man machine system interface.

Recommendations

The major issues of concern today are the scalability problem, testing, verification, and integration of neural network systems into the modern environment. Neural network programs sometimes become unstable when applied to larger problems. The defence, nuclear and space industries are concerned about the issue of testing and verification. The mathematical theories used to guarantee the performance of an applied neural network are still under development. The solution for the time being may be to train and test these intelligent systems much as we do for humans. Also there are some more practical problems like:

There are many advantages and limitations to neural network analysis and to discuss this subject properly we would have to look at each individual type of network, which isn't necessary for this general discussion. In reference to backpropagational networks however, there are some specific issues potential users should be aware of.

Conclusion

In this paper, we have presented a system for recognizing handwritten English characters. An experimental result shows that backpropagation network yields good recognition accuracy of 85%. We have demonstrated the application of MLP network to the handwritten character recognition problem. The skeletonized and normalized binary pixels of these characters were used as the inputs of the MLP network. In our further research work, we would like to improve the recognition accuracy of network for character recognition by using more training samples written by one person and by using a good feature extraction system. The training time may be reduced by using a good feature extraction technique and instead of using global input, we may use the feature input along with other neural network classifier.

The computing world has a lot to gain from neural networks. Their ability to learn by example makes them very flexible and powerful. Furthermore there is no need to devise an algorithm in order to perform a specific task; i.e. there is no need to understand the internal mechanisms of that task. They are also very well suited for real time systems because of their fast response and computational times which are due to their parallel architecture.

Neural networks also contribute to other areas of research such as neurology and psychology. They are regularly used to model parts of living organisms and to investigate the internal mechanisms of the brain.

Perhaps the most exciting aspect of neural networks is the possibility that some day 'conscious' networks might be produced. There are a number of scientists arguing that consciousness is a 'mechanical' property and that 'conscious' neural networks are a realistic possibility.

Finally, I would like to state that even though neural networks have a huge potential we will only get the best of them when they are integrated with computing, AI, fuzzy logic and related subjects

Print Email Download

Share This Essay

Did you find this essay useful? Share this essay with your friends and you could win £20 worth of Amazon vouchers. One winner chosen at random each month.

Request Removal

If you are the original writer of this essay and no longer wish to have the essay published on the UK Essays website then please click on the link below to request removal:

Request the removal of this essay.


More from UK Essays

Need help with your essay?

We offer a bespoke essay writing service and can produce an essay to your exact requirements, written by one of our expert academic writing team. Simply click on the button below to order your essay, you will see an instant price based on your specific needs before the order is processed:

Order an Essay - via our secure order system!