A Variety Of Learning Theories Or Models Education Essay

Published: Last Edited:

This essay has been submitted by a student. This is not an example of the work written by our professional essay writers.

A number of activities have been prepared to help the students understand certain concepts of the number and coding systems. The following sections will describe why the activities mentioned in the task sheets were chosen through the use of learning theories and practices.

Lesson 1 activities analysis

Through a constructivist approach, the knowledge of a person is built from previous knowledge (Boethel and Dimock in Reeve, Constructivism and Games, 2012). Therefore, instead of telling the students what binary is, a clip which explains the familiar concept of decimal number system can be used. I decided to include subtitles in the clip as this will help both the "auditory learners" (Clark, 2011) and the "visual learners" (Clark, 2011) to understand better. Through elicitation, the teacher can then determine whether the students understood. In order to revise the main procedure on how to determine the value of a number, the Decimal Numbers presentation is used.

Another short video clip, with subtitles, about the binary numbers can be used based on Kolb's findings that a student can acquire knowledge through experiences (McLeod, Kolb - Learning Styles Inventory, 2010), for example by watching something (Clark, 2011) (McLeod, Kolb - Learning Styles Inventory, 2010). Questions are then used to elicit information from the students in order to determine whether they have understood the main concepts.

The Binary Number System presentation was designed based on the modelling method, a core of the "cognitive apprenticeship" (Collins, Brown, & Newman, 1987). This method is mostly used in Maths and since this subject is quite mathematical, and novel to the students, I decided that it would be best if I use the same method, as students can observe and learn. In order not to have a direct teaching approach (Carnine, Silbert, Kame'enui, & Tarver, 2003), the teacher can first elicit information using the questions presented and then explain further. Through the principle of constructivism (Reeve, Constructivism and Games, 2012), the students can then use the Excel workbook, to try out examples using the methods just learnt.

As a concluding game, I chose a Tetris similar game in which the students have to convert between the two representations. As explained in (Reeve, Cognitivism and games, 2012) (Reeve, Game Mechanics and Learning Theory, 2012), such challenging puzzles incorporate cognitive learning and this was the reason why this game was chosen as the player needs to solve the challenge in a pre-determined time frame.

Homework is given using a matching game. I used this kind of activity based on the "read, think, try approach" as explained by Natvig & Line (2004, p. 108) because in this way the students can revise (e-Skool, 2010) by trying out conversions, test them out, and if correct then list them in the worksheet.

Lesson 2 activities analysis

The lesson begins with a revision quiz. The quiz was designed on the "trial and failure approach" (Natvig & Line, 2004, p. 108) as this can help the students to focus and think about how the given problems can be solved.

Based on the modelling method (Collins, Brown, & Newman, 1987), the hexadecimal presentation is to be used. The Decimal, Binary and Hexadecimal values worksheet and the online Hexadecimal test were chosen in order to help the student learn the hexadecimal values through constructivism (Reeve, Constructivism and Games, 2012). In addition, the students can construct (Reeve, Constructivism and Games, 2012) their knowledge further, and practice the conversions using the exercises in the Excel workbook.

In order to conclude the lesson, I have created a matching quiz based on the "read, think and try approach" (Natvig & Line, 2004, p. 108) as results can be modified if a mistake is noticed. This will help students to focus on the answers, and achieve high scores.

As for homework, I chose a ready-made quiz about the decimal, binary and hexadecimal conversions. The quiz is quite challenging, as the score and the time taken to answer, play an important role, and as described in (Reeve, Game Mechanics and Learning Theory, 2012) such a challenge reassures behaviourist, cognitive and constructivist learning.

Lesson 3 activities analysis

The first activity is an online test based on conversions. Cognitivism comes into play as the student needs to try his best and think, while reflecting on the answer before submitting (Reeve, Cognitivism and games, 2012).

In order to introduce the concept of registers, a video clip and a short quiz were created. I decided to use this activity, in order to motivate the students in their learning (Craik & Lockhart, 1972 and Craik & Lockhart, 1975 in Reeve, Cognitivism and games, 2012).

An activity, including a presentation about registers and a worksheet were designed based on the "discovery learning" (Bruner 1961 in McLeod, Bruner, 2012) approach. The presentation helps students to construct knowledge about registers, and the worksheet helps them to express their gained knowledge.

The students should read through the Coding Systems presentation, and through the principle of constructivism (Reeve, Constructivism and Games, 2012), they will be able to construct knowledge about a number of systems used to represent data. The information provided in this presentation helps the student to use ASCII in order to determine the values of the uppercase letters of the English alphabet, while using a presentation, and then use this constructed information to crack the code in the Discover the Message worksheet.

In order to allow the practice of creativity, the students are to create a poster with their names. This will help them use the constructed information to formulate their name using the ASCII character set, and determine the name of others for homework.

Another scaffolding approach (Collins, Brown, & Newman, 1987) was used when designing the ASCII values worksheet. This worksheet introduces the concept of the "plus one" in binary. The necessary basic knowledge is given in the sheet and this has to be used to solve the rest of the worksheet.

To conclude, a quiz was used to recall the main concepts of registers. The cognitivist theory (Reeve, Cognitivism and games, 2012) comes into play as the student is learning, and recalling his knowledge through thinking and reflection.

Lesson 4 activities analysis

The lesson starts off with a quiz that helps the students to recall and revise the main concepts of the previous lesson, based on the "trial and failure approach" (Natvig & Line, 2004, p. 108) as the students are supposed to know these concepts.

The students should then construct knowledge about binary addition and the concept of overflow using the Binary Addition presentation, as this will help them construct new knowledge based on the existing one (Reeve, Constructivism and Games, 2012). The presentation also includes 3 activities that help the students to further engage in learning. The Adding Binary Numbers workbook was based on the cognitive learning approach (Reeve, Cognitivism and games, 2012) as the students need to think, trying to perform the calculations based on the information constructed earlier. An online crossword puzzle is to be used, and I decided to use this tool to provide a "read, think and try approach" (Natvig & Line, 2004, p. 108) as the students can check the answers whenever there isn't a match at a cross-section of the puzzle. A short test was designed to help the students to think and reflect (Reeve, Cognitivism and games, 2012) on the addition and overflow concepts.

In order to conclude the lesson, a challenge was created by incorporating two activities, an online game allowing the player to convert a decimal number to binary number, and a worksheet in which binary numbers obtained from the game are to be added. Even though the online game is challenging, as the game runs against a timer, the principle of "read, think and try approach" (Natvig & Line, 2004) is implemented as the player is given a chance of correcting mistakes and thus gathering valid numbers for addition.

As for homework, a quiz about the addition and the overflow error was designed based on the "trial and failure approach" (Natvig & Line, 2004), however the students can still work the sums before, and check whether they are correct.


I believe that these learning activities do help students in learning about the foundations of the number and coding systems. However, instead of just creating material which the teacher can use to transfer her knowledge, these activities help the students to construct, think about, and try to solve the presented challenges and tasks.