Volume And Capacity Of Lung Biology Essay

Published:

This essay has been submitted by a student. This is not an example of the work written by our professional essay writers.

Spirometer is an instrument which is used to measure the volume and capacity of lung. It collects the air expired by the patient to measure the lung volume or capacity. The spirometer has a device attached to it which will measure the movement of gas in and out of chest and this device is called as Spirograph. And in some spirometers, spirographs are replaced by printer called Spirogram. In most of the computerized system the spirographs or the spirogram will display the predicted value next to the observed value. Using spirometer various tests are carried out to determine whether the patient is having any respiratory disorder or not.

1.2 PURPOSE OF THE PROJECT

The purpose of the project is to develop a spirometer which is of very low cost and can be used in rural health care centers, private clinicians and primary function laboratories to detect whether the patient is having any respiratory disorder or not by carrying out three basic tests-

Tidal Volume(TV)-The amount of air that is breathed in and out by an individual during normal respiration.

Forced Vital Capacity(FVC)-The amount of air that is maximally forced out of the lung after maximum inspiration.

Forced Expiratory Volume In 1sec(FEV1)- The amount of air that can be maximally forced out of the lung in the first second of forced expiratory manuever.

1.3 OBJECTIVE OF THE PROJECT

To design a low cost microcontroller based spirometer and carry out the various lung functioning tests.

To develop a program for the microcontroller to measure the lung volume and display the results digitally on a LCD interfaced with it.

CHAPTER 2

RESPIRATORY DISORDER : SYMPTOMS & CAUSES

2.1 RESPIRATORY DISORDER

Respiratory disorder  deals with the diseases of the respiratory system which include diseases of the lung, pleural cavity and bronchial tube. Respiratory diseases range from mild to life-threatening such as bacterial pneumonia or pulmonary embolism which may lead to illness and death. The study of respiratory E:\Documents and Settings\SSN\Desktop\Project\respiratory-system.jpg

disease is known as pulmonology. A doctor who specializes in respiratory disease is known as a pulmonologist.

Fig 2.1 RESPIRATORY SYSTEM

(http://www.3dscience.com)

Some of the common respiratory diseases are :

Inflammatory lung disease.

Obstructive lung disease.

Restrictive lung disease.

Pleural cavity diseases.

Respiratory tract infection.

Pulmonary vascular disease.

2.2 OBSTRUCTIVE LUNG DISEASE

Obstructive lung diseases are diseases of the lung in which the bronchial tubes become narrowed.E:\Documents and Settings\SSN\Desktop\Project\healthy-vs-copd.jpg

Two examples for obstructive lung disease are :

Chronic Obstructive Pulmonary Disease (COPD) is a disease in which the airways become damaged and hence making them narrow. Asthma causes obstruction to the airflow out of the lungs.And the obstruction is reversible. 

Fig 2.2 COPD

(http://www.bami.us/Resp/COPD2.html)

2.2.1 SYMPTOMS

Persistent cough.

Sputum or mucus production.

Wheezing.

Chest tightness.

Tiredness.

2.2.2 CAUSES

Smoking.

Occupational exposures.

Air pollution.

Genetics.

Autoimmune disease.

2.3 RESITRICTIVE LUNG DISEASE

Restrictive lung disease is also known as restrictive ventilatory which restricts the lung expansion and there by decreases the lung volume and increases work of breathing.adam_lung_emphysema.jpg

Fig 2.3 EMPHYSEMA

(http://lungcancer.ucla.edu/adm_lung_disease.html)

SYMPTOMS

Shortness of breath,cough.

2.3.2 CAUSES

Asbestos is caused by long-term exposure to asbestos dust.

Radiation fibrosis(radiation used for cancer treatment).

Rheumatoid arthritis.

2.4 DIAGNOSIS OF ABNORMALITY OF RESPIRATORY SYSTEM USING FEV1/FVC RATIO

In restrictive lung disease, both FEV1 and FVC are reduced so the FEV1/FVC ratio is normal.

In obstructive lung disease FEV1 is reduced while the FVC is normal thus the FEV/FVC ratio is lower.

TABLE-2.4.1 FEV1 RATIO AND ITS SEVERITY

FEV1

SEVERITY

≥ 80% of predicted

Normal

60-80% of predicted

Mild obstructive.

40-60% of predicted

Moderate

≤ 40% of predicted

Severe

TABLE-2.4.2 FVC RATIO AND ITS SEVERITY

FVC

SEVERITY

> 80% of predicted

Normal

60-80% of predicted

Mild restrictive.

50-60% of predicted

Moderate

> 50% of predicted

Severe

CHAPTER 3

LITERATURE SURVEY

AUTHORS

TECHNIQUES USED

RESULTS

LIMITATIONS/FUTURE VISION

Agarwal.V Ramachandran N.C.S,

2008[1]

The patient exhales through the mouthpiece where the gas exchange is being acquired as the voltage signal by the transducer(sensor).

This signal from the sensor is amplified by an instrumentation amplifier(INA 114).

Then the amplified signal is filtered using a low-pass-filter which is then given to a ADC(ADS7812) for digitisation.

After digitisation it is given to the microcontroller(Intel) from which the data is displayed on the LCD screen.

For further communication on internet, ETHERNET device is used.

The output voltage from the amplifier is digitised using ADC which corresponds to the pressure difference across mouthpiece is computed by the microcontroller and displayed on the LCD screen.

In future the system is expected to be inexpensive

medical care for thousands of patient.

Dr.David Van Sickle et.al,

2009[2]

Initially the patient is allowed to expire through the spirometer.

The spirometer consists of a pressure sensor(HW 24) which gives a DC voltage as output.

This DC voltage is propotional to the pressure drop between the leads which is recorded by the spirometer.

This analog data is then converted to digital using ZMD 31014 "iLite" chip.

Microcontroller(PIC18f13k50) is used to convert the digital data to USB.

Using mathematical algorithm implemented in the computer it calculates the volume and displays on the screen.

Graphical display of flow vs volume is evaluated and monitored from which the following values can be calculated :PEF,FVC, FEV(t) and FEV1/FVC ratio.

Highly expensive.

Nagaraja K.A,

Nanda.S, 2007[3]

The patient exhales the air through the mouthpiece which consists of a flow sensor, differential pressure sensor, instrumentation amplifier,low pass filter and ADC.

The flow sensor relates the velocity and the pressure of air blown if there is no air flow through the sensor the velocity is converted to pressure and this pressure difference is sensed by the difference flow sensor which inturn provide the electrical quantity of the air flow.

Inorder to remove noise and amplify the signal an instrumentation amplifier is used.

The signal is then fed to the band pass filter of the range 0.05Hz to 1.3Hz,where the spirometer lies in the range of 0.1Hz to 12Hz.

The filtered signal is digitised using ADC and this data is read by a microcontroller which is then interfaced to a computer.

Commonly measured parameters are FVC,FEV1,TV and MVV then the ratio FEV1 to FVC is calculated and monitored on the screen.

Depending on these values we determine whether the patient is normal (or) suffering from either restrictive (or) obstructive disorder.

Not portable

Ovlyaguli et.al,2001[4]

The test is performed using wedge bellow type spirometer the FVC and FEV1 data collected are investigated where the test is performed on different patient and are grouped accordingly.

Then a mathematical modeling process is carried out based on fuzzy values obtained from the flow graphs.

These values for the subject with COPD is compared with healthy subject belonging to same age,sex and height.

The compared values are normalized for fuzzy labels i.e; they are labeled as follows 'Very low','low','Normal','High','Very High'which is the generated on rule base and simulated.

Provide the interrelationship between characteristic constants obtained from the curves and degree of disease from which the FEV1 values are measured.

In future it eliminates the error factors and helps in accurate diagnosis.

CHAPTER 4

OVERVIEW OF THE PROJECT

4.1 BLOCK DIAGRAM

Fig 4.1 BLOCK DIAGRAM

4.2 PRINCIPLE OF WORKING

The spirometer consists of a turbine flow sensor containing LED(source) on one side and a photo-diode(detector) on the opposite side. Inbetween the LED and the detector there is a rotor. The rotor is a fan like structure with 3 fins. The above arrangement is present inside a cylindrical case which is opened on both the sides. The LED and the photo-diode are molded with a light weight plastic design inside the case. A mouth piece is fitted on one side and the opposite side is kept open. When the patient blows air inside the mouth piece a pressure difference is created due to the atmospheric air(atmospheric pressure) that enters from the opposite side. A power supply circuit is designed to provide power supply to the spirometer. When the patient exhales through the mouth piece the rotor rotates. Whenever the rotor is in-between the source and the detector the light from the source is not detected by the detector and when the rotor is not in-between them then the light from the source is detected by the detector. Each pulse will be detected only if 7ml of gas has been exhaled by the patient. These pulses are then given to the comparator which will give binary output only if the patient is exhaling. And when the patient is not exhaling there is no output from the comparator. This ouput is then given to a microcontroller which is programmed in such a way that it will count the number of pulses from the comparator and these pulses are converted into total number of rotations by dividing them(no of pulses) by 3(since the rotor has 3 fins). These rotations are then used to measure the lung volume. The lung volume is then displayed on a LCD which is interfaced with the microcontroller as digital output.

CHAPTER 5

SYSTEM DESCRIPTION

5.1 ELECTRONIC CIRCUIT

po.bmpFig 5.1.1 POWER SUPPLY CIRCUIT

Fig 5.1.2 POTENTIAL DIVIDER AND COMPARATOR CIRCUIT

Fig 5.1.3 MICROCONTROLLER & LCD DISPLAY

5.1.1 POWER SUPPLY CIRCUIT

A 12V and a 5V power supply circuit was implemented.

5.1.1.1 STEP-DOWN TRANSFORMER

Transformer being used is a 230V-step down transformer.

It converts AC to AC without any change in frequency

5.1.1.2 BRIDGE RECTIFIER

The diode used is IN4007 which acts as bridge rectifier and converts the given AC current to DC.

5.1.1.3 IC 7812 & IC 7805

The two ICs are used to provide 12V and 5V supply respectively.

12V from IC7812 is given to the turbine flow sensor.

5V from IC7805 is given to LM324 & Microcontroller

5.1.2 SENSOR

The sensor used here is FT-330 Turbine flow sensor.The input to the sensor is the air blown by the patient.

5.1.2.1 FEATURES

Can withstand temperature upto 80 degree celcius.

Molded with electronics and a light weight plastic design.

5.1.2.2 ADVANTAGES

Highly accurate.

Very compact.

Reliable.

5.1.3 POTENTIAL DIVIDER AND ZENER DIODE

The output of the turbine flow sensor is given to the potential divider.

The potential divider will reduce 12V from the turbine flow sensor and allows a reduced voltage to zener diode.

The zener diode is used to fix a threshold i.e it allows only voltage within 5V to the comparator.

5.1.4 COMPARATOR

LM324 acts as a comparator which gives a voltage within 5V(square wave) when the patient exhales through the sensor.

And when the patient does not exhale, the comparator output gets reduced to 0V.The output of the comparator is given to the microcontroller.

5.1.4.1 FEATURES

Internally frequency compensated for unity gain.

Large DC voltage gain of 100 dB.

Wide bandwidth (unity gain) 1 MHZ.

Wide power supply range:

Single supply 3V to 32Vor dual supplies ±1.5V to ±16V.

5.1.4.2 ADVANTAGES

Eliminates need for dual supplies.

Four internally compensated op amps in a single package.

Power drain suitable for battery operation.

5.1.5 MICROCONTROLLER

The microcontroller used here is 16F877A.

The microcontroller receives input from LM324.

The microcontroller is programmed in such a way that it will count the number of pulses from the comparator and these pulses are converted into total number of rotations by dividing them(no of pulses) by 3(since the rotor has 3 fins).These rotations are then used to measure the lung volume(TV,FVC,FEV1).

5.1.5.1 FEATURES

RAM=368 bytes

EEPROM=256bytes

PROGRAM MEMORY=8Kilo bytes

I/O PINS=33

5.1.5.2 ADVANTAGES

This IC can be reprogrammed and erased up to 10,000 times.

It is very cheap.It can also be very easily assembled.

Additional components needed to make this IC work is a 5V power supply , 20MHz crystal oscillator and two 22pF capacitors.

5.1.6 LCD DISPLAY

The output(TV,FVC,FEV1)from the microcontroller is displayed on the LCD according to the program.

5.2 MECHNICAL DESIGN( MATERIALS USED):

5.2.1.TURBINE FLOW SENSOR

5.2.1.1 MODEL

FT-330 Turbine flow sensor

5.2.1.2 ADVANTAGE

Highly accurate, compact and reliable.

5.2.1.3 FEATURES

Can withstand temperature upto 80 degree celcius.

Molded with electronics and a light weight plastic design.

5.2.2. MOUTH PIECE

Made up of plastic with a diameter of 2cm.

E:\Documents and Settings\SSN\My Documents\My Pictures\Picture\Picture 001.jpg

Fig 5.2.2.1 MOUTH PIECE

CHAPTER 6

CIRCUIT DESCRIPTION

6.1 OVERVIEW OF CIRCUIT WORKING

Initially the patient is allowed to blow through the sensor and the output voltage from the sensor is given as input to the potential divider circuit which limits the current to zener diode and which in turn reduces 12V supply from the potential divider output and allows only 5V to be given to the inverting terminal of LM324(comparator). Reference voltage is given to pin 3 which gets the feedback from LM324 output. Hence when the patient doesn't blow, a high voltage is received by pin 2(inverting terminal) which is compared with the reference voltage ,since the input voltage is greater than reference voltage we get a low voltage(0V) at the output and no pulse is seen and when the patient blows, input voltage is less than reference voltage so we get a high voltage at the output and a train of pulses can be seen. Then the LM324 output is given to the microcontroller(pin 33) and the final values are displayed on the LCD screen

.

6.2 CIRCUIT TESTING

C:\Users\hi\Desktop\Thamu0708.jpg

Fig6.2.1 BREADBOARD CONNECTION

6.3 RESULTS

TV o.jpg

Fig6.3.1 OUTPUT FROM SENSOR(TV)

FVC 1.jpg

Fig6.3.2 OUTPUT FROM SENSOR(FVC)

FEV 2.jpg

Fig6.3.3 OUTPUT FROM SENSOR(FEV1)

Image0874.jpg

Fig 6.3.4 OUTPUT FROM COMPARATOR(TV)

Fig 6.3.5 OUTPUT FROM COMPARATOR(FVC)

Fig 6.3.6 OUTPUT FROM COMPARATOR(FEV1)

Picture 008.jpg

Fig6.3.7 LCD DISPLAY(TV)

Picture 011.jpg

Fig6.3.8 LCD DISPLAY(FVC)

Picture 006.jpg

Fig6.3.9 LCD DISPLAY(FEV1)

CHAPTER 7

EXPERIMENTAL STUDY

7.1 ALGORITHM

1.Initialize the count to 0.

2.When the patient exhales, the number of pulses from LM324 will be counted i.e.; the count gets incremented.

3.This count is converted into rotations since the rotor has 3 fins, if we get 3 pulse, it is considered as 1 rotation. So by dividing the count by 3 we will get the total number of rotations.

4.The LM324 will give 1 pulse only if 7 ml of gas is exhaled . So the total number of rotations is multiplied by 7 to obtain the lung volume.

5.Initially the flag will be 0.When the patient exhales TV will be displayed.

6.When the reset is done the flag will be 1.Now when the patient exhales FVC will be displayed .

7.When the reset is done again the flag will be 2.Now when the patient exhales FEV1 will be displayed .Again when the reset is done and the patient exhales then TV will be displayed.

7.2 EXPERIMENTAL ANALYSIS

TABLE-7.2.1 NORMAL VALUES OF TV,FVC AND FEV1 FOR MALE AND FEMALE(Age=20 to25)

SUBJECTS

TV(mL)

FVC(L)

FEV1(L)

MALE

500

4.39+/-0.11

3.44+/-0.09

FEMALE

390

3.55-3.57

2.18

TABLE-7.2.2 TV,FVC AND FEV1 RESULTS FOR FEMALE(Age,20 to25)

CASES

TV(mL)

FVC(L)

FEV1(L)

CASE1

210

2.24

1.05

CASE2

252

2.8

2.1

CASE3

294

2.38

2.45

CASE4

336

2.94

2.27

7.3 VALIDATION

7.3.1 TEST RESULT FOR SUBJECT 1

E:\Documents and Settings\SSN\Desktop\Project\Respi\FVC(raa).bmp

Fig 7.3.1.1 FVC VALUES

E:\Documents and Settings\SSN\Desktop\Project\Respi\Graphraa.bmp

Fig 7.3.1.2 FVC GRAPH

E:\Documents and Settings\SSN\Desktop\Project\Respi\SVC(Raa).bmp

Fig 7.3.1.3 SVC GRAPH

7.3.2 TEST RESULT FOR SUBJECT 2

E:\Documents and Settings\SSN\Desktop\Project\Respi\FVC(r).bmp

Fig 7.3.2.1 FVC VALUES

E:\Documents and Settings\SSN\Desktop\Project\Respi\Graphr.bmp

Fig 7.3.2.2 FVC GRAPH

E:\Documents and Settings\SSN\Desktop\Project\Respi\SVC(R).bmp

Fig 7.3.2.3 SVC GRAPH

7.3.3 TEST RESULT FOR SUBJECT 3

E:\Documents and Settings\SSN\Desktop\Project\Respi\FVC(s).bmp

Fig 7.3.3.1 FVC VALUES

E:\Documents and Settings\SSN\Desktop\Project\Respi\GraphS.bmp

Fig 7.3.3.2 FVC GRAPH

E:\Documents and Settings\SSN\Desktop\Project\Respi\SVC(SNew).bmp

Fig 7.3.3.3 SVC GRAPH

7.3.4 TEST RESULT FOR SUBJECT 4 C:\Users\hi\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\FVC(t).bmp

Fig 7.3.4.1 FVC VALUES

C:\Users\hi\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\Grapht.bmp

Fig 7.3.4.2 FVC GRAPH

C:\Users\hi\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\SVC(T).bmp

Fig 7.3.4.3 SVC GRAPH

TABLE-7.3 COMPARISON OF TESTS RESULTS OBTAINED USING HELIOS PULMONARY FUNCTION TEST AND FROM DESIGNED SPIROMETER (FOR FEMALE,AGE=21)

SUBJECTS

HELIOS PULMONARY FUNCTION TEST

DESIGNED SPIROMETER

SUBJECT-1

TV(L)

1.42

1.3

FVC(L)

2.05

2.24

FEV1(L)

1.72

1.05

SUBJECT-2

TV(L)

1.75

1.59

SUBJECTS

HELIOS PULMONARY FUNCTION TEST

DESIGNED SPIROMETER

FVC(L)

2.76

2.80

FEV1(L)

2.52

2.1

SUBJECT-3

TV(L)

1.20

1.21

FVC(L)

2.68

2.3

FEV1(L)

2.50

2.45

SUBJECT-4

TV(L)

1.20

1.26

FVC(L)

2.99

2.94

FEV1(L)

2.58

2.27

7.4 INFERENCE

Thus the tests results obtained from the designed spirometer matches with the tests results obtained from the laboratory spirometer.

Minor differences in the value is due to effect of surrounding environment and moving air.

CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 CONCLUSION

The objective of the project was to design a low cost spirometer for the rural health care centers, private clinicians and primary function laboratories. In order to substantiate the objective of our work, we compared the market price of currently available spirometer(MIR SpiroDoc Spirometer), the starting price of which is around $1974.50.

TABLE-8.1 COST OF EACH COMPONENT

COMPONENT

QUANTITY NO

COST

Turbine flow sensor

1

450

Resistors

8

20

Capacitors

5

30

Diodes

5

60

IC LM324

1

150

Transformer

1

250

IC 7812

1

150

IC 7805

1

150

PIC 16F877A

1

175

LCD

1

220

Crystal Ocsillator

1

25

Total cost:Rs 2000/-

Thus the tests results of four subjects obtained from the designed spirometer was compared with the tests results obtained from HELIOS Pulmonary Function test. The values had some minor differences due to effect of surrounding environment and moving air. But they were of acceptable accuracy.

8.2 FUTURE WORK

Future work involves interfacing the device with PC and implementation of the product in Telemedicine application for distance monitoring of respiratory parameters.

APPENDICES

APPENDIX 1

PIN CONFIGURATION OF LM324(COMPARATOR)

http://www.voltagecurrent.info/wp-content/uploads/2009/12/lm324-connection-diagram.jpg

APPENDIX 2

PIN CONFIGURATION OF PIC16F877A

chip pinout PIC16F877A

APPENDIX 3

OVERVIEW OF PIC 16F877A

PIC16F877A at a glance

Writing Services

Essay Writing
Service

Find out how the very best essay writing service can help you accomplish more and achieve higher marks today.

Assignment Writing Service

From complicated assignments to tricky tasks, our experts can tackle virtually any question thrown at them.

Dissertation Writing Service

A dissertation (also known as a thesis or research project) is probably the most important piece of work for any student! From full dissertations to individual chapters, we’re on hand to support you.

Coursework Writing Service

Our expert qualified writers can help you get your coursework right first time, every time.

Dissertation Proposal Service

The first step to completing a dissertation is to create a proposal that talks about what you wish to do. Our experts can design suitable methodologies - perfect to help you get started with a dissertation.

Report Writing
Service

Reports for any audience. Perfectly structured, professionally written, and tailored to suit your exact requirements.

Essay Skeleton Answer Service

If you’re just looking for some help to get started on an essay, our outline service provides you with a perfect essay plan.

Marking & Proofreading Service

Not sure if your work is hitting the mark? Struggling to get feedback from your lecturer? Our premium marking service was created just for you - get the feedback you deserve now.

Exam Revision
Service

Exams can be one of the most stressful experiences you’ll ever have! Revision is key, and we’re here to help. With custom created revision notes and exam answers, you’ll never feel underprepared again.