Looking At Introduction To Substitution Reaction Biology Essay


This essay has been submitted by a student. This is not an example of the work written by our professional essay writers.

In a substitution reaction, a functional group in a particular chemical compound is replaced by another group. In organic chemistry, the electrophilic and nucleophilic substitution reactions are of prime importance. Organic substitution reactions are classified in several main organic reaction types depending on whether the reagent that brings about the substitution is considered an electrophile or a nucleophile, whether a reactive intermediate involved in the reaction is a carbocation , a carbanion or a free radical or whether the substrate is aliphatic or aromatic. Detailed understanding of a reaction type helps to predict the product outcome in a reaction. It also is helpful for optimizing a reaction with regard to variables such as temperature and choice of solvent.

A good example of a substitution reaction is the photochemical chlorination of methane forming methyl chloride.

In organic and inorganic chemistry, nucleophilic substitution is a fundamental class of substitution reaction in which an "electron rich" nucleophile selectively bonds with or attacks the positive or partially positive charge of an atom attached to a group or atom called the leaving group; the positive or partially positive atom is referred to as an electrophile.

The most general form for the reaction may be given as:

Nuc: + R-LG → R-Nuc + LG:

The electron pair (:) from the nucleophile (Nuc) attacks the substrate (R-LG) forming a new bond, while the leaving group (LG) departs with an electron pair. The principal product in this case is R-Nuc. The nucleophile may be electrically neutral or negatively charged, whereas the substrate is typically neutral or positively charged. An example of nucleophilic substitution is the hydrolysis of an alkyl bromide, R-Br, under alkaline conditions, where the attacking nucleophile is the OH− and the leaving group is Br-. R-Br + OH− → R-OH + Br−

Nucleophilic substitution reactions are commonplace in organic chemistry, and they can be broadly categorised as taking place at a saturated aliphatic carbon or at (less often) a saturated aromatic or other unsaturated carbon centre.

A nucleophile reacts with an aliphatic substrate in a nucleophilic aliphatic substitution reaction. These substitutions can be produced by two different mechanisms:

unimolecular nucleophilic substitution (SN1) and

bimolecular nucleophilic substitution (SN2).

The SN1 mechanism has two steps. In the first step, the leaving group departs, forming a carbocation. In the second step, the nucleophilic reagent attacks the carbocation and forms a sigma bond. This mechanism can result in either inversion or retention of configuration.

An SN2 reaction has just one step. The attack of the reagent and the expulsion of the leaving group happen simultaneously. This mechanism always results in inversion of configuration.

Nucleophilic substitution reactions:

There are many reactions in organic chemistry that involve this type of mechanism. Common examples include:

Organic reductions with hydrides, for example

R-X → R-H using LiAlH4   (SN2)

hydrolysis reactions such as:

R-Br + OH− → R-OH + Br− (SN2) or

R-Br + H2O → R-OH + HBr   (SN1)

Williamson ether synthesis:

R-Br + OR'− → R-OR' + Br−   (SN2)

The Wenker synthesis, a ring-closing reaction of aminoalcohols.

The Finkelstein reaction, a halide exchange reaction. Phosphorus nucleophiles appear in the Perkow reaction and the Michaelis-Arbuzov reaction.

The Kolbe nitrile synthesis, the reaction of alkyl halides with cyanides.

Nucleophilic substitution reaction at carbon:

SN1 mechanism

SN2 mechanism

According to hughes and ingold ca.1940:

It was found that:

Most primary compounds undergo SN2 reaction with second order kinetics.

And most tertiary compounds undergo SN1 reaction with first order kinetics.

Most nucleophilic substitution reactions fit one or the other of these two paterns.

Following are the important things which we consider in case of SN1 reactions:

fastest for tertiary substrates

needs a good leaving group

product will be racemic

carbocation intermediate

Following are the important things which we consider in case of SN2 reactions:

fastest for methyl and primary substrates

needs a strong nucleophile

leaving group does not need to be primarily good

Nucleophilic substitution at unsaturated carbon centres:

Nucleophilic substitution via the SN1 or SN2 mechanism does not generally occur with vinyl or aryl halides or related compounds. Under certain conditions nucleophilic substitutions may occur, via other mechanisms such as those described in the nucleophilic aromatic substitution article.

When the substitution occurs at the carbonyl group, the acyl group may undergo nucleophilic acyl substitution. This is the normal mode of substitution with carboxylic acid derivatives such as acyl chlorides, esters and amides.




Substitution Reactions of Benzene and Other Aromatic Compounds:

The remarkable stability of the unsaturated hydrocarbon benzene has been discussed in an earlier section. The chemical reactivity of benzene contrasts with that of the alkenes in that substitution reactions occur in preference to addition reactions, as illustrated in the following diagram.

Many other substitution reactions of benzene have been observed, the five most useful are listed below (chlorination and bromination are the most common halogenation reactions). Since the reagents and conditions employed in these reactions are electrophilic, these reactions are commonly referred to as Electrophilic Aromatic Substitution. The catalysts and co-reagents serve to generate the strong electrophilic species needed to effect the initial step of the substitution. The specific electrophile believed to function in each type of reaction is listed in the right hand column.

Reaction Type

Typical Equation

Electrophile   E(+)



+   Cl2 & heat

    FeCl3 catalyst


C6H5Cl   +   HCl


Cl(+) or Br(+)



+   HNO3 & heat

    H2SO4 catalyst


C6H5NO2   +   H2O





+   H2SO4 + SO3

    & heat


C6H5SO3H   +   H2O

Benzenesulfonic acid





+   R-Cl & heat

    AlCl3 catalyst


C6H5-R   +   HCl

An Arene





+   RCOCl & heat

    AlCl3 catalyst


C6H5COR   +   HCl

An Aryl Ketone


A Mechanism for Electrophilic Substitution Reactions of Benzene

A two-step mechanism has been proposed for these electrophilic substitution reactions. In the first, slow or rate-determining, step the electrophile forms a sigma-bond to the benzene ring, generating a positively charged benzenonium intermediate. In the second, fast step, a proton is removed from this intermediate, yielding a substituted benzene ring. The following four-part illustration shows this mechanism for the bromination reaction. Also, an animated diagram may be viewed.

Bromination of Benzene - An Example of Electrophilic Aromatic Substitution


This mechanism for electrophilic aromatic substitution should be considered in context with other mechanisms involving carbocation intermediates. These include SN1 and E1 reactions of alkyl halides, and Brønsted acid addition reactions of alkenes.

To summarize, when carbocation intermediates are formed one can expect them to react further by one or more of the following modes:

1. The cation may bond to a nucleophile to give a substitution or addition product.

2. The cation may transfer a proton to a base, giving a double bond product.

3. The cation may rearrange to a more stable carbocation, and then react by mode #1 or #2.

SN1 and E1 reactions are respective examples of the first two modes of reaction. The second step of alkene addition reactions proceeds by the first mode, and any of these three reactions may exhibit molecular rearrangement if an initial unstable carbocation is formed. The carbocation intermediate in electrophilic aromatic substitution (the benzenonium ion) is stabilized by charge delocalization (resonance) so it is not subject to rearrangement. In principle it could react by either mode 1 or 2, but the energetic advantage of reforming an aromatic ring leads to exclusive reaction by mode 2 (ie. proton loss).

Substitution Reactions of Benzene Derivatives:

When substituted benzene compounds undergo electrophilic substitution reactions of the kind discussed above, two related features must be considered:

The first is the relative reactivity of the compound compared with benzene itself. A nitro substituent decreases the ring's reactivity by roughly a million. This activation or deactivation of the benzene ring toward electrophilic substitution may be correlated with the electron donating or electron withdrawing influence of the substituents, as measured by molecular dipole moments. In the following diagram, electron donating substituents (blue dipoles) activate the benzene ring toward electrophilic attack, and electron withdrawing substituents (red dipoles) deactivate the ring (make it less reactive to electrophilic attack).


When a benzene ring has two substituent groups, each exerts an influence on subsequent substitution reactions. The activation or deactivation of the ring can be predicted more or less by the sum of the individual effects of these substituents. The site at which a new substituent is introduced depends on the orientation of the existing groups and their individual directing effects. We can identify two general behavior categories, as shown in the following table. Thus, the groups may be oriented in such a manner that their directing influences act in concert, reinforcing the outcome; or are opposed (antagonistic) to each other. Note that the orientations in each category change depending on whether the groups have similar or opposite individual directing effects.

Orientational Interaction of Substituents

Antagonistic or Non-Cooperative

Reinforcing or Cooperative

</TD< TR>

D = Electron Donating Group (ortho/para-directing)

W = Electron Withdrawing Group (meta-directing)  

The products from substitution reactions of compounds having a reinforcing orientation of substituents are easier to predict than those having antagonistic substituents. For example, the six equations shown below are all examples of reinforcing or cooperative directing effects operating in the expected manner. Symmetry, as in the first two cases, makes it easy to predict the site at which substitution is likely to occur. Note that if two different sites are favored, substitution will usually occur at the one that is least hindered by ortho groups.


In organic chemistry, a radical substitution reaction is a substitution reaction involving free radicals as a reactive intermediate .

The reaction always involves at least two steps, and possibly a third.

In the first step called initiation (2,3) a free radical is created by homolysis. Homolysis can be brought about by heat or light but also by radical initiators such as organic peroxides orazo compounds. Light is used to create two free radicals from one diatomic species. The final step is called termination (6,7) in which the radical recombines with another radical species. If the reaction is not terminated, but instead the radical group(s) go on to react further, the steps where new radicals are formed and then react is collectively known aspropagation (4,5) because a new radical is created available for secondary reactions.

Radical substitution reactions

In free radical halogenation reactions radical substitution takes place with halogen reagents and alkane substrates. Another important class of radical substitutions involve aryl radicals. One example is the hydroxylation of benzene by Fenton's reagent. Many oxidation and reduction reactions in organic chemistry have free radical intermediates, for example the oxidation of aldehydes to carboxylic acids with chromic acid. Coupling reactions can also be considered radical substitutions. Certain aromatic substitutions takes place by radical-nucleophilic aromatic substitution. Auto-oxidation is a process responsible for deterioration of paints and food and lab hazards such as diethyl ether peroxide.

More radical substitutions are listed below:

The Barton-McCombie deoxygenation is a way to substitute a hydroxyl group for a proton.

The Wohl-Ziegler reaction involves the allylic bromination of alkenes.

The Hunsdiecker reaction converts silver salts of carboxylic acids to alkyl halides.

The Dowd-Beckwith reaction involves ring expansion of cyclic β-keto esters.

The Barton reaction involves synthesis of nitrosoalcohols from nitrites.


Nucleophilic Substitution, Elimination & Addition Reactions of Benzene Derivatives

1. Substitution

An early method of preparing phenol (the Dow process) involved the reaction of chlorobenzene with a concentrated sodium hydroxide solution at temperatures above 350 °C. The chief products are phenol and diphenyl ether (see below). This apparent nucleophilic substitution reaction is surprising, since aryl halides are generally incapable of reacting by either an SN1 or SN2 pathway.

C6H5-Cl  +  NaOH solution

350 °C

C6H5-OH  +  C6H5-O-C6H5  +  NaCl

The presence of electron-withdrawing groups (such as nitro) ortho and para to the chlorine substantially enhance the rate of substitution, as shown in the set of equations presented on the left below. To explain this, a third mechanism for nucleophilic substitution has been proposed. This two-step mechanism is characterized by initial addition of the nucleophile (hydroxide ion or water) to the aromatic ring, followed by loss of a halide anion from the negatively charged intermediate.

Addition-elimination processes generally occur at sp2 or sp hybridized carbon atoms, in contrast to SN1 and SN2 reactions. When applied to aromatic halides, as in the present discussion, this mechanism is called SNAr. Some distinguishing features of the three common nucleophilic substitution mechanisms are summarized in the following table.


Number of Steps

Bond Formation Timing

Carbon Hybridization



After Bond Breaking

Usually sp3



Simultaneous with

Bond Breaking

Usually sp3



Prior to Bond Breaking

Usually sp2

2. Elimination

There is good evidence that the synthesis of phenol from chlorobenzene does not proceed by the addition-elimination mechanism (SNAr) described above. For example, treatment of para-chlorotoluene with sodium hydroxide solution at temperatures above 350 °C gave an equimolar mixture of meta- and para-cresols (hydroxytoluenes). Chloro and bromobenzene reacted with the very strong base sodium amide (NaNH2 at low temperature (-33 °C in liquid ammonia) to give good yields of aniline (aminobenzene). However, ortho-chloroanisole gave exclusively meta-methoxyaniline under the same conditions. These reactions are described by the following equations.



The explanation for this curious repositioning of the substituent group lies in a different two-step mechanism we can refer to as an elimination-addition process. The intermediate in this mechanism is an unstable benzyne species, as displayed in the above illustration by clicking the "Show Mechanism" button. In contrast to the parallel overlap of p-orbitals in a stable alkyne triple bond, the p-orbitals of a benzyne are tilted ca.120° apart, so the reactivity of this incipient triple bond to addition reactions is greatly enhanced. In the absence of steric hindrance (top example) equal amounts of meta- and para-cresols are obtained. The steric bulk of the methoxy group and the ability of its ether oxygen to stabilize an adjacent anion result in a substantial bias in the addition of amide anion or ammonia.

3. Addition

Although it does so less readily than simple alkenes or dienes, benzene adds hydrogen at high pressure in the presence of Pt, Pd or Ni catalysts. The product is cyclohexane and the heat of reaction provides evidence of benzene's thermodynamic stability. Substituted benzene rings may also be reduced in this fashion, and hydroxy-substituted compounds, such as phenol, catechol and resorcinol, give carbonyl products resulting from the fast ketonization of intermediate enols. Nickel catalysts are often used for this purpose, as noted in the following equations.

Benzene is more susceptible to radical addition reactions than to electrophilic addition. We have already noted that benzene does not react with chlorine or bromine in the absence of a catalyst and heat. In strong sunlight or with radical initiators benzene adds these halogens to give hexahalocyclohexanes. It is worth noting that these same conditions effect radical substitution of cyclohexane, the key factors in this change of behavior are the pi-bonds array in benzene, which permit addition, and the weaker C-H bonds in cyclohexane. The addition of chlorine is shown below; two of the seven meso-stereoisomers will appear if the "Show Isomer" button is clicked.



Writing Services

Essay Writing

Find out how the very best essay writing service can help you accomplish more and achieve higher marks today.

Assignment Writing Service

From complicated assignments to tricky tasks, our experts can tackle virtually any question thrown at them.

Dissertation Writing Service

A dissertation (also known as a thesis or research project) is probably the most important piece of work for any student! From full dissertations to individual chapters, we’re on hand to support you.

Coursework Writing Service

Our expert qualified writers can help you get your coursework right first time, every time.

Dissertation Proposal Service

The first step to completing a dissertation is to create a proposal that talks about what you wish to do. Our experts can design suitable methodologies - perfect to help you get started with a dissertation.

Report Writing

Reports for any audience. Perfectly structured, professionally written, and tailored to suit your exact requirements.

Essay Skeleton Answer Service

If you’re just looking for some help to get started on an essay, our outline service provides you with a perfect essay plan.

Marking & Proofreading Service

Not sure if your work is hitting the mark? Struggling to get feedback from your lecturer? Our premium marking service was created just for you - get the feedback you deserve now.

Exam Revision

Exams can be one of the most stressful experiences you’ll ever have! Revision is key, and we’re here to help. With custom created revision notes and exam answers, you’ll never feel underprepared again.