Flow Cytometry And Gel Electrophoresis Biotechnology Use Biology Essay

Published: Last Edited:

This essay has been submitted by a student. This is not an example of the work written by our professional essay writers.

Molecular assessment has increasingly become an essential diagnostic and assessment tool in clinical medicine. Among the most important of these tools of biotechnology are the technologies of gel electrophoresis and flow cytometry. Use of these molecular assessment tools has facilitated the study of DNA and proteins that may contribute to the pathogenetic mechanisms associated with diverse diseases. Mutations in DNA and protein structure can be identified using these molecular approaches. This paper summarizes each of these methods and provides examples of their relevance to biomedical research and clinical medicine. Flow Cytometry Analytical flow cytometry (AFC) is used to assess the biochemical composition of cells using an optical scanner in the assessment of individual cells as they are screened individually at a rapid rate (approximately 100 cells per second) through an optical scanner (Boddy et al 2001; Givan 2001). This methodology permits quantitative measurements of molecular components within each cell individually (Davey & Kell 1996; Givan 2001). An important medical use of AFC is the identification of specific strains of infectious bacteria in infected cells obtained from patient biopsy (Boddy et al 2001). Once the pathogen is identified, AFC is also used in therapeutic assessment of antibiotics on

the clinical course of infection by examining patient cells by AFC post-treatment. In this regard, AFC is an important biomedical tool in the assessment of parameters of clinical sensitivity and resistance of specific bacterial strains to specific therapeutic regimens (Davey & Kell, 1996). In addition, AFC can be used to measure the cellular DNA and protein concentration and the activity of

specific enzymes (Roederer 2001). The capability of AFC to assess molecular content within individual cells involves the use of fluorescence measurements to characterize the biochemical components of cells. In this technique, fluorescent probes are applied to specific cell molecules which are then assessed via the detection of optical excitation patterns emitted by these optically labeled cell components. (Shapiro 2003). These optical excitation patterns emitted by the fluorescently labeled cell components can be used to pinpoint

specific types of molecules and to quantitate their concentrations within the cell (Shapiro 2003). This accuracy is facilitated by the standardization of controlled flow by means of hydrodynamic focusing methods (Shapiro 2003). Further analytical sophistication can be achieved by the use of multiple optical beams and two channel detectors to detect two different cellular signals at the same time in the same scan while providing a high sensitivity (Zhong et al 2005).

Labeled nanoparticles are also be utilized as probes in the molecular assessment of cell composition (Zhong et al 2005). In addition to biochemical composition, AFC can be used to assess cell proliferation by means of accurately identifying cell cycle composition of dividing mitotic cells. This assessment can be carried out in individual cells (Pozaroski & Darzynkiewicz 2004). This method requires the DNA binding dye propidium iodide (Shapiro 2003). DNA and protein content can be assessed simultaneously in individual cells by means of bivariate analysis and comparisons between normal cells and tumor cells (Pozaroski & Darzynkiewicz 2004). This technique also permits the evaluation of cell viability on an individual basis and can distinguish cell death resulting from apoptosis versus necrotic mechanisms (Bertho et al 2000). Apoptosis results in a characteristic cell fragmentation into small apoptotic bodies containing fragmented DNA segments; this process can be detected by AFC and distinguished from plasma membrane degradation which is characteristic of necrotic cell death mechanisms. Cell viability measurements are an important component of disease assessment with regard to the identification of pathogenic mechanisms that may cause cell death. Selective tissue destruction is an important clinical manifestation of infectious disease and can be monitored using AFC. Cell viability measurements by AFC therefore represent an important clinical evaluation tool for pathophysiological mechanisms that are utilized to assess the efficacy of therapeutic approaches designed to preserve cell viability (Galanzha et al 2008). Flow cytometry is an excellent tool for analyzing protein interactions (He et al, 2003; Oswald 2004). Different types of protein associations can be involved in pathological cellular responses important to disease mechanisms (He et al 2003; Maecker & Trotter 2006). AFC is a tool for analyzing the pathophysiology of specific diseases at the cellular level. Thrombocytopenia resulting from heparin can be made using AFC to identify antibodies activated by heparin that selectively target platelets (Gobbi et al 2004).

Another specific application of AFC is in Glanzmann's thrombasthenia. AFC can be used to diagnose this condition by identifying patient auto-antibodies involved in blood platelet destruction ( Giannini et al 2008). Yet by use of an application called fluorescence resonance energy transfer (FRET). In this approach, different proteins are labeled with different fluorescent tags that produce different excitation patterns based on the type of interaction

another recently implemented molecular use of AFC involves the detection of gene silencing mechanisms resulting from the action of microRNAs. (Martinex-Ferrandis et al 2007). The inappropriate activity of these nucleic acid regulators has been linked to cancer and other diseases (He et al 2003). MicroRNAs are also being studied for therapeutic applications to disable disease-causing proteins. AFC can be utilized to monitor the activities of these important regulatory molecules (Martinex-Ferrandis et al 2007). Flow cytometry can be used to sort cells after short interfering RNA (siRNAs) are labeled with a fluorescent probe. (Maeker & Trotter, 2006). Using this approach, the molecular basis of cell responses to miRNAs can be assessed at the molecular level (Martinex-Ferrandis et al 2007; Novo & Wood 2008).

Gel electrophoresis

Gel electrophoresis is a powerful tool for the evaluation of DNA and protein molecules that can be used to identify these macromolecules based on their molecular weight (Voytas 2001). This method uses voltage to create an electric field that allows negatively charged molecules to migrate through the molecular pores of a polymer, such as agarose or polyacrylamide (Voytas 2001). The rate of separation of linear DNA and denatured charged protein molecules is associated with the pore diameter within the polymerized gel matrix (Voytas 2001). The speed of separation of DNA is related to the molecular weight of the linear molecule. DNA carries a uniformly distributed net negative charge due to phosphate groups in the double helix backbone. Therefore, DNA travels from the negative electrode to the positive electrode. The speed of separation of DNA in the gel is determined directly by the length of the molecule (Voytas 2001). The distance migrated by an individual DNA segment on the gel is a direct function of its molecular weight that can be compared to known standard markers (Voytas 2001). Agarose is the most commonly used gel polymer utilized in DNA molecular weight determination, as the pore matrix generated by this gel polymer can be used to separate and identify DNA of 200- 25,999 base pairs (bps). Polyacrylamide is another gel polymer utilized in the separation of DNAs from 1-1000 bps and is also used in DNA sequence analysis (Voytas 2001). DNA electrophoresis is used extensively in medicine (VanHeukelum & Bartema 2003). This biotechnology tool is used to assess DNA changes that cause genetic diseases (VanHeukelum & Bartema 2003). DNA analysis of infectious disease agents provides important information on disease pathogenesis as well as the identification of infectious agents (Sellers et al 2007). The recent, rapid discernment of viruses responsible for epidemics of influenza was made possible by DNA sequence analysis of viruses (Sellers et al 2007). DNA gel electrophoresis is also used extensively in cancer screening and diagnosis (Tse et al 2006). Specific mutations in breast cancer and many other types of cancer can be distinguished using gel electrophoresis (Tse et al 2006). In the case of breast cancer, inherited forms of this disease result from mutations in the BRCA genes. The molecular assessment of these disease causing mutations is a critical prognosticator of disease parameters and treatment possibilities (Zustin et al 2009). The comet assay is a recent advancement in DNA electrophoresis technology that permits the detection of DNA mutations at the level of individual cells (Shapohnikov, 2008). In this method, detergent-lysed cells are loaded in a gel. These cells are termed nucleoids. The nucleoids containing DNA migrate through the gel polymer in a pattern that resembles a comet. The intensity of the tail band is directly related to the amount of DNA damage in the cells. (Shaposhnikov 2008). Protein electrophoresis is another powerful application of gel electrophoresis and is based on similar methodology to DNA gel electrophoresis. In protein electrophoresis, a gel placed in an electric field is used to distinguish proteins from each other (Carrrette et al 2006). Since proteins have a more complex and variable three-dimensional structure and non-uniform charge distribution such as occurs in linear DNA, proteins must be modified in several ways prior to electrophoresis in order to make a determination of molecular weight. This process is called denaturation and involves the chemical unfolding of globular proteins using detergent. A uniform negative charge distribution is achieved by coating the linearized protein with specialized detergents such as sodium dodecyl sulfate (SDS) which effects the distribution of sulfate groups along the length of the linearized molecule. The protein now resembles DNA in its uniform diameter and charge distribution, so that differences in molecular weight are directly proportional to the length of the protein molecules generated by the linkage of amino acids. (Daszykowski et al 2009). The molecular weight of an unknown protein is determined by comparing its rate of migration through a denaturing gel polymer composed of polyacrylamide and SDS with the rate of separation of protein standards, measured in daltons (d). Differences in the molecular weights of proteins in normal and diseased states may result from mutations that alter the genetic code specifying protein structure. These structural mutations may affect protein function and cause pathophysiological effects characteristic of many different diseases (Kaczmarek et al 2004). Protein electrophoresis is also applied to intact globular proteins, termed "native proteins" to evaluate changes in the identity or sequence of amino acids that may affect the configuration of the protein(Carrette et al 2006). The electrophoresis of hemoglobin from patients with sickle cell disease was responsible for identifying the mutation in the B-globin gene responsible for this blood disorder. Many new applications of protein gel electrophoresis have been developed in recent years that have greatly expanded its biomedical usefulness.

Difference gel electrophoresis (DIGE) is one example of a more complex application of protein electrophoresis that can be used to detect very subtle amino acid changes in proteins resulting from gene mutations (Unlu et al 1997; Minden et al 2009). Conventional protein gel assessment methodologies, which involve the simultaneous separation and analysis of many different cellular proteins, create gel migration distortions of protein electrophoretic patterns that decrease the sensitivity of the assay (Dowsey et al 2008). These pattern distortions complicate the assessment of single protein analysis so important in the molecular characterization of proteins implicated in human disease (Dowsey et al 2008). DIGE technology allows for the accurate assessment of many cells for an individual protein that may be present in different structural configurations depending on its source (Minden et al 2009). Fluorescent dyes are used to identify and compare proteins from different cells that are electrophoresed in the gel (Minden et al 2009). An important clinical application of DIGE involves the assessment of proteins found in cancer cells that are compared to proteins found in non-cancer cells to detect structural and functional alterations that may be the result of cancer-causing mutations (Minden et al 2009). In many cases internal protein standard controls are included in DIGE assessment in order to increase the sensitivity of this biotechnology tool (Daszykowski et al 2009). Another modification of protein electrophoresis with extensive clinical application is called discontinuous native protein gel electrophoresis. This methodology is used to analyze the three-dimensional structure of proteins (Niepmann & Zhang 2006). This is advance over non-denaturing protein gel technology in use for many decades that are restricted generally to the analysis of monomeric proteins comprised of a single strand of amino acids (Niepmann & Zhang 2006). Discontinuous protein electrophoresis involves the separation of non-denatured proteins based on differences in oligomeric state in addition to molecular weight and 3-D structure (Rosell et al 2009). This method involves the utilization of an agent called Serva blue G that is mixed with the protein to add negative charges to their native protein. The protein is placed in a gradient gel and a discontinuous buffer is used to achieve protein separation (Raymer & Smith 2007). The gel running buffer contains a nonstandard amino acid, histidine, in place of glycine, which results in a slower migration pattern associated with electrophoretic protein separation (Raymer & Smith 2007). In this format, proteins separation involves differences in diverse parameters including oligomeric configuration (Sellers et al 2007; Tse et al 2009). This technology has facilitated the assessment of complex proteins and protein:protein associations that are critical components of the molecular assessment of disease (Scarontastna & Scaronlais 2005).


The biotechnology tools, flow cytometry and gel electrophoresis, were developed to facilitate the molecular assessment of DNA and proteins to assist basic research in molecular biology. Over the past several decades, these important technologies have been adapted to the research of clinical medicine to afford a molecular analysis of human disease that is unprecedented in medical history. The study of individuals cells, genes and proteins have permitted biomedical researchers to develop an in-depth understanding of the causes of human diseases, the physiological parameters that distinguish healthy and disease states, and the basis for the development of novel preventive, diagnostic screening, and therapeutic approaches to infectious, metabolic and genetic disorders. The ongoing development of newer and more advanced methodologies of flow cytometry and gel electrophoresis suggest that their importance in clinical medicine and biomedical research will continue to afford new insights in the study of molecular medicine.