Control Of Secretions And Motility Stomach Small Intestine Biology Essay


The stomach and the small intestine both play an important role in the digestive system of humans. The stomach, a j-shaped muscular organ, performs a valuable function in food storage and in mixing food and gastric juices together. While the small intestine is the receiver of the food digested by the stomach and where food is further broken down through chemical processes and food nutrients are absorbed by the intestinal walls and transported through the blood vessels in a process called diffusion.

During the process of digestion, the movement of the muscles in the stomach and small intestines is necessary in transferring the food being processed by the digestive tracts and in mixing the ingested food with gastrointestinal chemicals that will further aid in the digestion process. This movement in the muscles is known as gastro-intestinal motility.

In general, motility is defined as the capacity of organisms to move and digest food through the digestive tract or what is known as peristaltics. Peristaltics describes both the movement of the stomach or gut motility, or the movement in the intestinal region or intestinal motility.

Lady using a tablet
Lady using a tablet


Essay Writers

Lady Using Tablet

Get your grade
or your money back

using our Essay Writing Service!

Essay Writing Service

What is the similarities and differences between stomach motility and intestinal motility? Stomach motility is likened to the motility in the small intestines because the two functions on the purpose of propelling digested food towards its next step of digestion. The difference is in the stomach the food propelled through contractions in the stomach walls are moving towards the small intestine to be further digested, while in the small intestines the food is fully digested and it is the waste product of the digestive process - the parts of the meal that cannot be fully broken down by the digestive enzymes - which is propelled through intestinal motility towards the large intestine and is then transformed into waste material or fecal matter.

Both intestinal motility and stomach motility serves the function of mixing digested food with intestinal enzymes and digestive juices to aid in liquefying solid food into liquids that can be absorbed by the intestinal walls and transported via blood vessels. The difference is in the enzymes that are mixed in with the food and the end result of the process.

In the stomach, motility will aid in dissolving ingested food by crushing, grounding, and mixing it with gastric juices till the stomach comes up with a liquefied form called chyme. In the small intestine, motility helps in mixing digestive enzymes produced from the pancreas and bile with the chyme produced by the stomach and which was moved to the small intestine through motility. Motility in the small intestines also helps not just in the breakdown of foodstuff but more importantly in transforming food into a liquid that could be dispersed and absorbed by the epithelium of the intestinal walls and thus facilitate enzymatic digestion and absorption of the nutrient molecules found in food.

The motility of the stomach and the intestine also has two distinct movements corresponding to the differences in their function in the digestive process. In the stomach muscular movement can be seen in two aspects; first in the upper stomach the muscular movement are low frequency sustained contractions aimed at relaxing the muscular walls of the stomach in order to function as the storage are of food prior to liquifying it into chyme. The motility in the lower part of the stomach is manifested in strong peristaltic waves of contraction that increases in nearing the pylorus, which is found at the lower part of the stomach. The Pylorus leads to the small intestine. This rapid movement corresponds to the role of the lower part of the stomach which grinds food and liquifies it as chyme before transporting it towards the small intestine. Upon the arrival of food, the stomach releases peristaltic waves. Small amounts of chyme are released through the pyloric sphincter intro the duodenum.

G-cells found in the stomach releases the gastrin hormone and results to the succeeding secretion of pepsinogen, HCl and intrinsic factor from the stomach's parietal cells. It also leads to an increase in the stomach's motility. The Gastric inhibitory peptide (GIP) meanwhile, lessens the gastric acid and motility. The hormone enteroglucagon also functions to decrease the stomach movements while the small intestine is still digesting food. Secretin meanwhile is produced in the small intestine and results to effects in the pancreas but also decreases the stomach's acid secretion.

Lady using a tablet
Lady using a tablet


Writing Services

Lady Using Tablet

Always on Time

Marked to Standard

Order Now

If in the stomach muscle movement or motility serves to relax the muscles of the upper stomach so as to play its part as a reservoir of food while at the same time lower part is muscles move in an agitated manner so as to function as a grinder of food; in the small intestine motility also performs a similar function. This function or characteristic of the movement associated with motility is called as patterns of motility.

Both the stomach and intestine move in such a way as to induce propulsion of food. This is achieved when a ring of muscles in the digestive tract contracts at the end near the oral cavity and then moves toward the anal tract. This propels the contents of the digestive tract towards the direction of the anus, but as the ring of muscle moves, the muscle on the other side relaxes and facilitates a smooth passage of the digested material.

Both the stomach and intestine also moves to mix food by moving muscles in what is called as segmentation. In segmentation rings of muscle form segments which contracts and relaxes which in turn chop and mix ingested material. This is clear shown by the movement in the muscles of the small intestine, while in the stomach this kind of movement can be seen in the alternating contraction and relaxation of the longitudinal muscles of the stomach which was already discussed above.

As with the other parts of the digestive system both stomach and intestinal motility is controlled by the excitatory and inhibitory signals that emanate from the enteric nervous system. The enteric nervous system is made up of two networks of neurons which are integrated within the walls of the digestive tract and reaches to the anus from the oesophagus. However the part that plays an important part in digestive tract motility is the myenteric plexus.

Differences in the secretion are also evident in the stomach and small intestine. Secretions in the stomach include mucus which covers the entire luminal surface down to the glands referred to as "mucous neck cells". A bicarbonate-rich mucus is secreted which coats and lubricates the gastric surface. Hydrochloric acid is also secreted by the stomach's parietal cells into the lumen. This acid is instrumental in neutralizing microorganisms like bacteria. Pepsinogen is also released by the stomach into gastric juice through chief cells and mucous. The last of the four major products of the gastric epithelium is the hormones. Gastrin, as previously discussed, is important in controlling acid secretion and gastric motility.

In the case of the small intestine, quantities of water are secreted to the lumen of the small intestine during digestion. Two different processes creates the osmotic gradient which generates water in the intestine's lumen. The boost in luminal osmotic pressure as a result from influx and digestion, and the crypt cells actively secreting electrolytes which causes water secretion.

In spite of the aforementioned differences, motility and secretion in the stomach and small intestine works in sync with the rest of the gastrointestinal system to digest food and absorb nutrients needed by the human body.