Contribution Of Bioinformatics To Advancing Health And Medicine Biology Essay


Bioinformatics came into eminence with the beginning of Human Genome Project with its central role in genome data storage, manipulation and analysis. It is the branch of science which through the use of high electronic beam screen computer technology summates all the biological data mainly the genetic aspects that has been produced over the years by the research scientists. Traditionally, researches were carried out at the experimental laboratory, but with the huge increase in the data of the genomic area a need of incorporating the computers in the research process has been arisen. Now, it mainly involves the construction, updating and maintenance of the database containing a wealth of biological information and at the same time enables the users to analyze and explore the data. It includes aspects of computer science, software engineering, mathematics and molecular biology. It has been used with different scopes including genomics, biosciences, clinical research along with biomedical and health informatics.

Image showing the fields of informatics

Fig 1: A Flowchart showing various branches that comes under the study of informatics.

Lady using a tablet
Lady using a tablet


Essay Writers

Lady Using Tablet

Get your grade
or your money back

using our Essay Writing Service!

Essay Writing Service

The term medical informatics deals with the application of fast growing computer technology to the field of medicine; it could be either medical education or for the purpose of medical research which ultimately enhances our understanding in the treatment of disease. "Health informatics is now tending to replace commoner term medical informatics reflecting a widespread concern to define an information agenda for health services which recognizes the role of citizens as agents in their own care, as well as the major information-handling roles of the non-medical healthcare professions".

However, with the advancement of science and technology, bioinformatics now emerges as a new facet of science which combines the fields of Molecular Biology and Genetics, Biotechnology and Microbiology making them interpreted and explored by means of computer technology. The establishment of NCBI (national centre for biotechnology information) in 1988 as a public database, has helped in disseminating information across the world thereby facilitates in tracking out the molecular processes of the disease

Image showing the homepage of NCBI

Fig 2: Figure showing the NCBI database page. The page shows the establishment of database in the year 1988 and the various parameters that can be explored using this database.

In the later phase many other databases were created such as Ensembl aiding in tracking the genetic mechanism responsible for the pathogenesis of the disease.

Bioinformatics, genomics and Disease

The findings of the genome project are:

1) There are approximately 30,000 genes in human

2) The DNA sequence between two individuals is 99.9 % same and the differences lies only in the 0.1 % which contribute to our individuality.

Cracking the human genome code and the publication of 3.2 billion sequences making up the human chromosomes on the internet by the US department of energy (DOE) and National Institute of Health has revolutionized the field of pharmacogenomics. Knowledge generated by these biomedical databases enables the health care organisations to identify the citizens who are not only at the genetic risks for developing the diseases but also the ones who are the at risk of developing symptomatic diseases which could be reduced. These innovative approaches cannot be sustained without effectively dealing with the vast amounts of data generated in the laboratory in the areas of functional and structural genomics and proteomics. It helps the other scientist and doctors to understand the molecular DNA code (the blueprint of an individual) in detail. The major diseases targeted by the drug industries mainly are AIDS, mental illnesses, auto immune diseases, obesity , Alzheimer's, Parkinson's and Heart diseases.

Fig 3. Image of NCBI showing genes and disease map

Fig 3: Figure showing the human chromosomes 1, 2, 3 and 4 with the gene loci mapped responsible for the diseases. VHL gene on chromosome 3 mapped for example is a factor that participates sometimes in the pathogenesis of cancer.

Also, Single nucleotide polymorphism (SNP) contributes to the 0.1 % differences for genetic makeup. Till now 3.2 million polymorphic SNPs have been mapped and these SNPs aids in finding the human predisposition to any particular diseases. They are serving as a genetic markers in correlating the drug efficacy and toxicity potential of any individual

Lady using a tablet
Lady using a tablet


Writing Services

Lady Using Tablet

Always on Time

Marked to Standard

Order Now

Bioinformatics softwares are in current use to track these hidden SNPs in human genome. Copy number variations (CNVs) are also the other factor adding up another contribution in 0.1 % differences and causes diseases in humans.

Fig 4: Image showing SNP Genotyping system

Fig 4: Figure showing the SNP detecting series wherein the software detects more than 10,000 SNPs and arranges them in a data.

The microarray technologies along with the array algorithm are in current use to track out these variations in SNPs.The microarray technology provides huge ranges of informatics opportunities.They are a tool for monitoring the gene expression levels for thousands of genes in parallel. The expression data obtained and stored is highly informative for diseased state. These can also be used for distinguishing tumour types, define new subtypes and identify misclassified cell lines and to predict prognostic outcomes. This approach is particularly powerful in offering the promise of "personalised medicine", where in the specific underlined effect can be identified and the prognosis predicted.

Fig:Analysis of Microarray data

Figure showing analysis of Microarrays data to discover new tumour classification and to build gene predictors for cancer diagnosis.

Personalised medicine was defined by Francis Colins, head of the human genome project as "using information about the person's genetic makeup to tailor strategies for the detection, treatment or prevention of the disease". The concept of personalised medicine is becoming accepted by the medical profession, the FDA, health insurance organisations and pharmaceutical industries. This promise is to be used in the prevention of diseases.

Fig 8: Personalised medicine

Fig 8: Personalised medicine requires the integration of clinical data, genomics and phenotyping. Bioinformatics is crucial in translating these data into applications leading to improved diagnosis, prediction and prognosis with treatments.

Bio-informatics and Proteomics:

The expression level of any particular gene is not correlated with the level of mRNA present in the cell. Also the human genes undergo alternative splicing and RNA editing mechanism, enhancing a gene potential in coding different proteins. Due to which studying mRNA and DNA sequences alone are not able to give the correct expression status of the genes dominating in a particular disease. Thus, the fields of bioinformatics have now collaborated with the science of proteins to analyze and explore every protein in the human body. Also, with the advent of X-ray crystallography and NMR (Natural Magnetic Resonance), it is possible to capture and study proteins on the screen in their 3D structure. Today scientists are on the verge of creating human proteome map and if they will be successful in their proteome map there will be a better quality of life serving to minute details.

The figure below explains the differences found in the renal carcinoma and the healthier ones with the help of bioinformatics.

Figure 5: Figure showing the diagnosis of renal carcinoma using the 2D-Gel electrophoresis technique. Normal: indicates normal without carcinoma, RCC: indicates Renal cell carcinoma.

Bioinformatics and Pharmacology

The 1994 noble prize winner for decoding cellular signalling mechanism, Alfred Gilman, a pharmacologist is now working on a project to trace the cellular signalling mechanism map and transcribed that knowledge on the computer screen. Inspired by him, now all the drug companies are using the technology of bioinformatics to develop more algorithms that can be used to predict the function of proteins encoded by newly discovered genes. These have been possible by the use of various multiple alignment software that is in current use to establish the phylogenetic relationships of the proteins under study.

Drug docking is the most powerful technology, possible through the bioinformatics knowledge are in most common use to find the docking site of the drug in the active cleft of the proteins. The proteins participating in the pathogenesis of diseases can be easily mapped out and docked on the computer screen which has revolutionized the field of pharmacology. Scientists nowadays are able to map the mutations in proteins giving drug-resistant property to the cells. For e.g., scientists have even mapped out mutations in HIV protease and HIV reverse transcriptase isolated from heavily drug treated HIV I infected patients (Fig 6, 7). This will definitely enhance the knowledge of better understanding the drug resistant mechanism which are the common scenario observed in AIDS, Cancer and Tuberculosis. For tuberculosis, the genome of Mycobacterium tuberculosis has been sequenced and mapped to explore the ABC transporters proteins present in the bacteria giving drug resistant property.

Lady using a tablet
Lady using a tablet

This Essay is

a Student's Work

Lady Using Tablet

This essay has been submitted by a student. This is not an example of the work written by our professional essay writers.

Examples of our work

Fig 6: X Ray crystallography structure

Figure 6: Figure showing the X-ray crystallography structure of HIV I protease enzyme. Red colour indicates the mutations in the active site of the enzyme while purple colour indicates accessory changes.

Fig 7: Drug resistance

Figure 7: Figure showing the drug resistant potential of HIV I resistant drugs. The upper half showing the drug resistant against HIV I protease and the second half indicates drug resistant profiling against HIV I reverse transcriptase.

AZT: azidothymidine, DDI: dideoxyinosine, DDC:dideoxycytidine, D4T:stavudine, ABC;, 3TC:Lamivudine

Bio-informatics plays an essential role in decoding genomic, transcriptomic and proteomic data produced by experimental technologies, and organizing information from traditional biology and medicine. Also, biomarkers which are molecular signatures can be used to measure the progress of a disease and also the physiological effects of therapeutic interventions. They often serve as an early warning signs for various diseases including cancer, tuberculosis, cardiovascular diseases etc. Because of various types of biomarkers, and various methods to validate them, a number of bioinformatics tools are available for biomarker analysis. DNA,RNA, protein and antibody microarrays are generally used for analysis of biomarkers. For example, a recent bioinformatics method called Decision Forest analysis has been used to identify biomarkers for oesophageal cancer. It identifies various types of SNPs and SNP patterns in the oesophageal cancer.

Certain drug therapies are non-curative while some also cause substantial side effects. Some drugs also reveal individual differences in therapeutic responses, of which a substantial amount relates to genetic determination of an individual. Hence, a focus needs to be placed on subpopulations that demonstrate the same disease phenotypes but different genotypes or genetic profiles. The slightest genetic difference makes a huge impact on the individual's susceptibility to diseases and its responsive treatment to the drugs.

From the discovery of the exchange of DNA strands by homologous chromosomes (Joshua Lederberg in 1958) that resulted in genetic variation and from the present day discovery by the Mario Capecchi and Oliver Smithies in 2007 who have applied the homologous recombination in mammalian cells, the homologous recombination has been proved to occur between introduced DNA, with which the cell chromosomes are repaired using the induced genes. Thus, now the researches are prominently focusing onto target the genes which are involved in mammalian organ development, helping in correction of Several inborn errors that arise in the event of malformation. If the experiments prove to be successful on the mouse model acting as a source for gene therapy, the art of medicine will be enriched with biology as a foundation of future developments in medicine.

Current Technologies in complete merging of informatics with medicine

However, the function of many genes encoded by the human genomes is yet to be determined. Bioinformatics failed to decode the functions of some novel genes which does not exhibit homology sequence pattern with the other genes published in the database. For this in vitro research (wet lab) is required to perform the necessary manipulations. The human genomes submitted by both public and private sectors have gaps in them. Also, 95 % of human DNA is junk. Bio-informatics failed to signify the importance of these non-coding sequences and their existence. We still do not have complete expression libraries that are a expression signature of the genes present in a tissue or organ. Proteins, their location and modification are not characterized. Not all diseased genes have been characterized so far and the genetic differences between normal and disease state are not known.NMR and X-ray crystallography techniques are labour intensive and required a month or two.

Bioinformatics has also failed to predict the functions of novel proteins whose structure are not similar to that of the other proteins present in the databases. The procedure of molecular docking is very much time consuming.