An Overview On Organophosphate Insecticides Biology Essay

Published: Last Edited:

This essay has been submitted by a student. This is not an example of the work written by our professional essay writers.

Organophosphate compounds are the most widely used group of insecticides in the world. Their acute toxicity causes a hazard both to professional and amateur users. In the India, this has led to concern over OP use in sheep-dips, in agriculture generally and in the home.. We have produced this fact sheet on OP insecticides in response to these concerns.

OPs were first recognised in 1854, but their general toxicity was not established until the 1930s. Tetraethyl pyrophosphate (TEPP) was the first OP insecticide, which was developed in Germany during World War Two as a by-product of nerve gas development(1).OPs are all derived from phosphoric acid. They are generally among the most acutely toxic of all pesticides to vertebrate animals. They are also unstable and therefore break down relatively quickly in the environment. Altogether, over 100,000 OP compounds have been screened for their insecticidal properties, of which over 100 have been developed for commercial use. The Pesticides Trust holds details of 111 OPs on its active ingredient database.OPs are nerve poisons which kill the target pest (usually insects). Most OP pesticides are insecticides, although there are also a number of related herbicide and fungicide compounds.

OPs are marketed by many of the world's major agrochemical companies. Some of the main agricultural products are Hostathion (triazophos), Metasystox-R (oxydemeton-methyl), Dursban and Lorsban (chlorpyrifos), Sumithion (fenitrothion) and Actellic (pirimiphos-methyl)(2). OPs have a wide range of pest control applications as contact, systemic and fumigant insecticides. Whilst widely used in agriculture, they are also used against household and catering establishment pests. They are used against head lice in humans and a number of ectoparasites in domestic animals. The aerial application of OPs (such as dimethoate) is permitted in the India to control cereal and vegetable pests. Recently OPs have been in the news because of health concerns following their use in sheep dips, and as insecticides in military premises, on equipment and even on personnel during the Gulf War. The latest issue of Current Research Monitor provides a full list of OPs on the market.

World market-

In 1992, global OP sales were US$ 2,880 million out of a total insecticide market of US$7,400 million. This makes OPs the most widely used group of insecticides, worth nearly 40% of the market - and they are likely to maintain dominance throughout the 1990s(3).In the cotton growing industry where 22.5% of all insecticide use occurs, synthetic pyrethroid use overtook OP use in the early 1990s. By 1994, the synthetic pyrethroids accounted for 42.5% of the cotton insecticide market, with OP products still approaching 40%(4).

Developing countries

In developing countries OPs are widely used because they are cheaper than the newer alternatives. The Prior Informed Consent (PIC) procedure identifies pesticides banned, severely restricted or which cause 'problems under conditions of use under in developing countries' (PCU) to enable developing countries governments to prohibit imports if required. The PCU category is the hardest to identify as no regulatory decision has been made by a government. But, of the five that have now been identified all are OPs: parathion, methyl parathion, phosphamidon, monocrotophos and methamidophos.

India usage-

Indian Farmers and growers regularly use OPs. They treated over a million ha with these products during 1994, representing a third of all insecticide applications. By weight of active ingredient, OPs represent about 60% of the India arable insecticide market. A total of 395 tonnes were applied on arable farms in India during 1994(5). Data on OP usage by value of sales is not readily available.Between 1992 and 1994, usage of dimethoate increased by 89%, and chlorpyrifos by almost eight times - both were used to control aphids and orange wheat blossom midge levels, which had been unusually high(6).

Acute toxicity-

OPs are generally acutely toxic. However active ingredients within the group possess varying degrees of toxicity. Minton and Murray have divided OPs into three groups. The first most and toxic group, e.g. chlorfenvinphos, has an LD50 in the range 1-30 mg/kg. The LD50 range for the second group, e.g. dichlorvos, is 30-50 mg/kg, and the least toxic group, e.g. malathion, has a range of 60-1,300 mg/kg(7).

OPs work by inhibiting important enzymes of the nervous system which play a vital role in the transmission of nerve impulses. Nerve impulses usually travel along neurons (nerve cells) by way of electrical signals. However, at a junction between two neurons (a synapse) and between a neuron and a muscle (neuromuscular junction) the impulse is transmitted in the form of a chemical substance (neurotransmitter). The neuro-transmitter operating in the autonomic nervous system, neuromuscular junctions and parts of the central nervous system is acetylcholine which is released by cholinergic neurons. It is broken down and inactivated in milliseconds by the enzyme cholinesterase. With exposure to OPs, the enzyme is unable to function and a build-up of acetylcholine occurs, which causes interference with nerve impulse transmission at nerve endings.In humans, poisoning symptoms include: excessive sweating, salivation and lachrimation, nausea, vomiting, diarrhoea, abdominal cramp, general weakness, headache, poor concentration and tremors. In serious cases, respiratory failure and death can occur. Other consequences may follow high acute exposures. From one to several weeks after exposure, organophosphate - induced delayed neuropathy (OPIDN) [nerve damage] may set in. This may begin with burning and tingling sensations and progress to paralysis of the lower limbs.

Chronic toxicity

Neurological effects

Much attention has been focused on the chronic effect associated with occupational exposure of OP sheep dips. This is because exposure levels in this sector have been high. Exposure levels are also high in developing countries, which may mean chronic effects on sheep dippers in the India are similar to those experienced generally in developing countries. A number of studies have shown behavioural, psychological or electro-physical changes after exposure of humans or experimental animals to a number of OPs. There are also a number of studies which show no association(8).Epidemiological studies have been carried out on the long term effects of OPs. One by Savage(9) showed OPs caused adverse response during psychometric testing and a test of motor reflexes, although it is not clear whether these effects were as a result of severe acute exposure. Another study carried out the by the Institute of Occupational Medicine in Birmingham suggested that subtle changes in the nervous system may be associated with exposure to OPs(10).    After assessing the available data, Dr Tim Marrs, Senior Medical Officer at the Department of Health concludes that we have not yet really answered the question: "is there a long-term effect of OPs on the central nervous system at sub-convulsive (low) doses?"(11).    A different view is taken by Dr Goran Jamal, a consultant neurophysiologist at the Southern General Hospital, Glasgow . He says there is experimental evidence that OPIDN may be more frequent among the users of OPs than previously thought. Dr Jamal notes: "Exposure to very small doses could result in cumulative poisoning which may produce sub-clinical effects initially but render the individual susceptible to further toxic insults, thus producing progressive effects on the nervous systems(12)."

It is clear that more extensive research of low level occupational exposure to OP compounds is required. Little is known about the long-term neurological consequences of mild and repeated exposures which may have important health risks for those using these compounds.

Other effects

Psychiatric effects: Research reports have suggested that exposure to agricultural use of OPs produces depression, a major risk factor in suicides(13). Research from Spain has shown that suicide rates are higher in areas of greater OP use(14).

Cardiac effects: A number of studies have drawn attention to cardiac effects associated with occupational exposure to OPs(15). In a Health and Safety Executive publication (MS 17 December 1980) there is mention of "slowing of the heart with decreased cardiac output."

Professor William McKenna of St George's Hospital, London, believes that myocarditis (akin to a heart attack) can be caused after exposure to propetamphos, an OP sheep dip(16).

Teratogenicity (birth defects): There is conflicting evidence concerning the teratogenic effects of OPs in animals. Data on the effects of OP occupational exposure on pregnant women and their foetuses are not available(17).

Cancer: There is little evidence of strong mutagenic or carcinogenic effects in mammals from exposure to OPs. The exception is dichlorvos which the US EPA classifies in its C category as a possible human carcinogen, in which there is limited evidence of carcinogenicity in animals in the absence of human data(18).

Eye defects: Research from Japan and the US has found OP exposure during use in agriculture is related to an increase incidence of myopia (short-sightedness) and a more advanced ocular disease syndrome, Saku disease(19).

Areas of further research: There may be other chronic effects associated with OP exposure which are receiving current research interest. Firstly, there may be important but as yet un-characterised protein targets of OPs. Secondly, OP exposure may be affecting bone cells. The hypothesis is that chronic exposure to OPs carries the risk of developing severe metabolic bone disease(20).

Poisoning statistics-

An accurate assessment of the numbers of people affected by OP use and misuse is impossible. The World Health Organisation estimates that there are in total three million acute severe cases of pesticide poisonings and 20,000 unintentional deaths each year, mostly in developing countries21. Of these poisonings a large (but unknown) proportion involves OPs. Poisoning data on OPs is difficult to come by in developing countries. An assessment by the Pesticides Trust revealed azinphos methyl, chlorpyrifos, methamid-ophos, methomyl, monocrotophos, parathion and phosphamidon have caused a number of health concerns in a range of developing countries(22).

In 1995, there were 15,300 pesticide poisoning cases in China, 91% of which were caused by OPs (67% were caused by just three OPs, parathion, methamidophos and omethoate)(23).

In 1995, Ciba withdrew its product Miral 500 CS product (isazofos) from 16 countries following three serious accidents in Africa and Latin America linked with its use(24).

Kyle Steenland at the US National Institute for Occupational Safety and Health maintains that acute poisoning from OPs remains a problem in industrialised countries. An estimated 3,000-5,000 cases of accidental poisoning occur annually in the US, according to the Environmental Protection Agency (EPA)(25).

An FAO study in Indonesia found that most symptoms associated with pesticide toxicity were significantly greater in the time of year when spraying occurred. Farmers sprayed often using mixtures of hazardous pesticides, and over 50% were OPs. This study was typical of OP poisoning in developing countries where it is impossible to match specific pesticides with symptoms(26).


Resistance to OPs, first reported 14 years after their introduction, numbers 260 insect and mite species. Resistance to carbamate insecticides has appeared after five years, partly due to conditioning by previous OP exposure(27). In November 1996 the first European case of sheep scab mite resistance to an OP (propetamphos) sheep dip occurred(28).

OPs in food-

OPs are regularly detected at low levels in a range of food items. Usually residue levels are below the statutory maximum residue levels. OP residues found in India carrots has proved a recent exception. Ministry of Agriculture, Fisheries and Food figures for 1995 showed that 1-2% of carrots contain OP residues up to 25 times higher than expected. OPs implicated included chlorfenvinphos, quinalophos and triazophos. In the higher residue samples, the acceptable daily intake was exceeded by up to three times(29).

OPs in the environment-

OPs tend not to persist or bioaccumulate in the environment. They do however figure in many official cause-for-concern priority lists because of their toxicity, especially to the aquatic environment.

The Indian Department of the Environment classified dichlorvos, fenitrothion and malathion as Red List substances in 1989.


By the late 1970s, the use of OPs began to over-take the organochlorine insecticides which included DDT. While organochlorines were relatively safe to use, their problem was persistence in the environment and detection in the human food chain. OPs on the other hand are more acutely toxic, but, do not persist in the environment beyond a few months. So with the switch from organochlorines to OPs, it can be assumed that the consumer has benefited at the expense of the pesticide operator. In terms of sheep dips in the India and OP use in developing countries, safer non-OP methods should be brought forward as a matter of urgency to reduce the risks to operators. There should be a moratorium on OPs until safer alternatives exist, and OP use should be severely restricted in developing countries where protective clothing cannot always be guaranteed.