0115 966 7955 Today's Opening Times 10:00 - 20:00 (GMT)
Place an Order
Instant price

Struggling with your work?

Get it right the first time & learn smarter today

Place an Order
Banner ad for Viper plagiarism checker

Effects of Indoor Plants on Air Pollution

Disclaimer: This work has been submitted by a student. This is not an example of the work written by our professional academic writers. You can view samples of our professional work here.

Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of UK Essays.

Published: Tue, 20 Feb 2018

Are indoor plants adapted to get rid formaldehyde, Sipin, Elly Lorreta one of the noxious wastes commonly found at home 002348-019 nowadays?

1.0 Introduction

I did further research and found out that indoor air pollution phenomenon has urged the NASA (National Aeronautics and Space Administration) scientists to study the functions of plants to provide clean indoor air. NASA has become the pioneer towards this research and recently has been widened by many other associations like the Wolverton Environmental Services, Inc. endorsed by the Plants for Clean Air Council in Mitchellville, Maryland[1]. Research done by NASA has found out that there are certain plants that have the function to purify the air in a building[2]. They detoxify the existing toxins and pollutants which originate from the things used in daily activities nowadays; fabrics, detergents and also furniture. These pollutants can be classified into three common indoor pollutants according to the list of indoor contaminant that are currently present. There are benzene, formaldehyde and trichloroethylene. (TCE)[3]

Plants use the concept of transpiration to work onto this problem[4]. As the vaporized chemical enters the stomatal opening on the leaves of the indoor plants, they are either broken down directly or be sent downwards; down to the root system of the plants.[5] The presence of colonies of microbes at the root system breaks down various kinds of unhealthy compounds; in this case the indoor pollutants, and absorbs them as their source of food[6]. As for the mechanism of transpiration to remove the pollutant, water vapour that is liberated by the leaves of the plants will mix with the air in the atmosphere. Convection of air leads to the movement of the atmospheric air that is contaminated with the vaporized chemical downwards to the base of the plants.

I chose 6 types of plants to be experimented by one fixed type of pollutant; formaldehyde. It is normally used in the production of grocery bags, facial tissues, waxed paper, waxed paper[7] and produced by tobacco products, gas cookers and open fireplaces.[8] In the experiment, this chemical is predicted to be absorbed by each plant. Plant that absorbs the chemical the most would be the efficient plant to be included in places mentioned before.

2.0 Aim

To study the effect of plants transpiration towards the acidity and mass of formaldehyde in a transparent chamber.

3.0 Planning and method development

Firstly, a chamber must be set up to place plants chosen. A pot of selected plant is placed into each chamber. 6 types of plants were chosen, therefore 6 chambers must be created. To make sure that air, sunlight and water could be continuously supplied, I decided that the chamber must be transparent, and there are holes to let air enters. The material that I chose is transparent plastic so that holes can be poked, the wall of the chambers can be flipped to water the plants everyday and plants get sufficient sunlight.

I selected formaldehyde as the pollutant to the plants. In each of the chamber, I included formalin of the same amount in a beaker and let it evaporate in the chamber. As formalin CH2O, is a reducing agent[9], therefore it has the ability to release its hydrogen.[10] The more hydrogen ions present in it, the greater the strength of the acid. When evaporation of formalin happens continuously, there will be less in quantity of hydrogen atoms in the aqueous solution. Thus, the acidity of formaldehyde could decrease through evaporation; pH of the formalin increases. So, the pH of the formalin is ought to be checked for every interval of two days. Because concept of evaporation is used, it is for sure the volume of the formalin will reduce. The most effective method to measure this is by getting the mass decrease. I took the reading of the mass of formalin for every interval of two days. I decided to take note on the external condition of all the plants so that analysis on that can be done to find its relativity with formalin.

4.0 Hypothesis

My prediction is that indoor plants have the ability to get rid of formaldehyde, one of the noxious wastes commonly found at home nowadays by absorbing the chemicals through their microscopic openings perforated on their leaves; the stomata[11]. As the chemical evaporates, the molecules of the chemical are absorbed by the plants by gaining entrance through the stomata. These plants transport the absorbed chemical to their root system along the xylem of the plants to be broken down by the microbes present at the roots.[12] As formalin acts as a reducing agent, release of hydrogen could occur. Through evaporation of formalin, there will be less hydrogen atoms could remain in the aqueous solution. Thus, it is possible for the decrease in mass and increase in the pH of the formalin to occur when indoor plants are available.

5.0 Methodology

5.1 Variables

a) Independent:

* Types of plants chosen to be experimented

There are variety types of plants chosen in order to know whether the hypothesis could be accepted. They are Boston fern (Nephrolepis exaltata “Bostoniensis”), Janet Craig(Dracaena deremensis), Florist’s mum(Chrysanthemum morifolium), Kimberly queen fern (Nephrolepis obliterata), Snake plant or mother-in-law’s tongue (Sansevieria trifasciata ‘Laurentii’), Himalayan Balsam (Impatiens glandulifera) altogether. Himalayan Balsam (Impatiens glandulifera) acts as the control of the experiment to show its less in efficiency to absorb the toxin. Some plants have no ability to absorb the chosen toxin as good as in some indoor plants.

b) Dependent:

* The rate of absorption of formaldehyde

The rate of absorption of formaldehyde is taken as the decrease in mass of formalin over time. This is documented for every interval of two days. Other than that, the acidity of formaldehyde in each chamber is also noted. This is done by using pH paper and pH meter to indicate the change in pH. The pH of the formalin in the chamber is recorded to see the pattern of change in acidity.

c) Fixed:

* The type of toxin chosen; formaldehyde

Liquid formalin is selected to be one of the fixed variables in this experiment so that the analysis of the change in acidity can be done easily. More than one type of pollutant will promote confusion while conducting the experiment as the characteristic of one pollutant differ from one to another. Formalin is the aqueous state of the chemical formaldehyde and the concentration of the liquid formalin is 100%. I made the volume and the concentration of liquid formalin the same in every small beaker included in every transparent chamber. It is important to do so because the pH of the chemical and its mass are to be checked every 2 days throughout the duration of the experiment. The initial pH of the chemical is 3.510 while the initial volume of the chemical is 10 ± 0.5 ml making its mass to be 10.19 ± 0.01 g

* The estimated size of the plants chosen

The chosen plants are of the same size. There is no specific measurement for the plants sizes so therefore, the size is depending on the experimenter’s justification by fixing the number of leaves present in every plant chosen. This is due to the mechanism of the absorption of the chemical formalin happens through the microscopic opening present on the leaves; the stomata. It is therefore can be predicted that more tiny opening present on the leaves, the more effective would the rate of absorption be. I decided that the total number of leaves is approximately 15-20 leaves depending on the how broad the surface of the leaves is.

* The size of the pyramidal transparent chamber

The size of the pyramidal transparent chamber is to be made constant by using the same size and number of transparent plastic bags. The size of the plastic bags is 23cm x 38cm and they are cut into same shapes to fit it with the skeleton of the chamber. The base of the chamber is triangular in shape and constant with the area of ½ (50cm x 50cm).

5.2 Materials

MATERIALS

QUANTITY

JUSTIFICATION

Formalin

120ml

Formalin acts as the toxin in the experiment.

Tap Water

5 litres

This is used to water the plants everyday for 2 weeks duration.

5.3 Apparatus

APPARATUS

QUANTITY

JUSTIFICATION

Boston fern

(N. exaltata)

1 pot

These are the plants chosen to determine their effectiveness to absorb the formalin.

Janet Craig

(D. deremensis)

1 pot

Florist’s mum

(C. morifolium)

1 pot

Kimberly queen fern

(N. obliterata)

1 pot

Snake plant

(S. trifasciata)

1 pot

Himalayan Balsam

(I. glandulifera)

1 pot

pH paper

1 box

To check the acidity of formalin every 2 days.

pH meter

1

To determine the pH of the formalin every 2 days.

Disposable plastic cups

24

To be the base of the pyramidal transparent chamber.

Plastic and bamboo chopsticks

54

To be the poles of the pyramidal transparent chamber.

Electronic balance

1

To measure the decrease in mass of the liquid formalin for every 2 days.

50ml beaker

6

To place the liquid formalin in each chamber.

50ml measuring cylinder

1

To measure the amount of formalin in each 50ml beaker.

Transparent plastics for packaging

(23cm x 38cm)

1 pack

To become the cover of the chamber.

5.4 Methodology to prepare a chamber for the plant

A chamber has to be invented to place the chosen plants, considering the needs of those plants to get sufficient sunlight, air and water. I chose transparent plastics and attach them together to create a pyramidal transparent chamber. Holes were also poked to allow air move into the chamber.
I included nine chopsticks to be the poles of chamber. A pole comprised of 3 combined chopsticks. To increase its stability, I poked a hole onto the bases of three disposable plastic cups and inserted the chopsticks into the holes.

5.5 Methodology to determine the change in acidity of formaldehyde

After the chamber was set up, I prepared the solution of the toxin chosen; formalin.in a 50ml beaker. 10 ± 0.5 ml of the chemical in each beaker was measured using 50ml measuring cylinder.
6 transparent chambers were set up to place 6 types of plants which were the Boston fern (N. exaltata), Janet Craig (D. deremensis), Florist’s mum (C. morifolium), Kimberly queen fern (N. obliterata), Snake plant (S. trifasciata), and Himalayan Balsam (I. glandulifera). All the 6 chambers contained different pots of plants and 10ml of formalin in a 50ml beaker.
At intervals of 2 days, the mass of the formalin was recorded. The procedure to get the mass of formalin in each chamber was as follows;

* Take the reading of the mass of 50ml beaker before filling in the formalin by using electronic balance. Repeat the steps 3 times in order to get the average reading.

* Weigh the 50ml beaker containing formalin by using electronic balance. Repeat the procedure 3 times in order to get the average reading.

The reading of the mass of the formalin + 50ml beaker at intervals of 2 days was recorded. The mass of the formalin was determined by subtracting the average value of the mass of formalin + 50ml beaker with the average mass of the 50ml beaker.
The pH was again checked by using pH paper and also pH meter for 2 weeks. The change in colour of the pH paper and the reading of the pH meter were noted and documented.
Each of the plants in the chamber was watered once a day using tap water. The amount of tap water must was 20ml per watering and watering time was at 10.30 a.m and 4.00 p.m. every day.
Condition for each of the plants was observed for interval time of 2 days.
All of results were recorded in a table.

5.5.1 Precaution

1. Beware while handling formalin because it is a dangerous chemical. Since a high concentration of formaldehyde will be used in the experiment, [13]it may cause burning sensation to the eyes, nose and lungs. Thus it could result in allergic reaction because of formalin.

2. Be cautious when building the pyramidal transparent chamber especially when dealing with the bamboo sticks. Avoid any sharp splinter of the bamboo stick from piercing into the skin.

6.0 Data collection

TABLE 1: THE pH of FORMALIN IN EACH TRANSPARENT CHAMBER WITH DIFFERENT PLANTS IN 14 DAYS

Transparent chamber containing plants

Value of Ph of formalin in each transparent chamber according to number of days

2 days

4 days

6 days

8 days

10 days

12 days

14 days

Boston fern (N. exaltata “Bostoniensis”)

3.510

3.550

3.570

4.020

4.130

4.260

4.310

Janet Craig (D. deremensis)

3.510

3.570

3.580

4.020

4.070

4.210

4.430

Florist’s mum (C. morifolium)

3.510

3.570

3.590

4.120

4.200

4.320

4.620

Kimberly queen fern (N. obliterate)

3.510

3.510

3.520

4.010

4.030

4.050

4.110

Snake plant (S. trifasciata ‘Laurentii’)

3.510

3.370

3.360

4.030

4.030

4.030

4.030

Himalayan Balsam (I. glandulifera)

3.510

3.370

3.370

3.350

3.350

3.350

3.350

Note: The pH of formalin in each beaker was checked at the same interval to ensure that none of the formalin being absorbed more by their respective plants. The time that they were checked was at a range of 4.00 p.m. until 4.45 p.m.

10

Are indoor plants adapted to get rid formaldehyde, Sipin, Elly Lorreta one of the noxious wastes commonly found at home 002348-019 nowadays?

TABLE 2: MASS OF FORMALIN + 50ml BEAKER IN EACH CHAMBER CONTAINING DIFFERENT PLANTS IN 14 DAYS

Transparent chamber containing plants

Mass of formalin + 50ml beaker in each transparent chamber ± 0.01g

2 days

4 days

6 days

1st

2nd

3rd

1st

2nd

3rd

1st

2nd

3rd

Boston fern (N. exaltata)

46.950

46.960

46.960

46.530

46.540

46.550

46.230

46.220

46.220

Janet Craig (D. deremensis)

46.910

46.910

46.910

46.520

46.520

46.510

46.310

46.310

46.310

Florist’s mum (C. morifolium)

46.940

46.940

46.950

46.610

46.600

46.610

46.350

46.340

46.350

Kimberly queen fern (N. obliterata)

46.970

46.970

46.970

46.620

46.620

46.640

46.430

46.410

46.410

Snake plant (S. trifasciata)

46.920

46.910

46.910

46.620

46.630

46.610

46.420

46.410

46.430

Himalayan Balsam(I. glandulifera)

46.940

46.940

46.930

46.780

46.790

46.790

46.720

46.710

46.720

Note: The mass of the formalin was measured at intervals of 2 days and it was at a range of time from 4.00 p.m. until 4.45 p.m.

10

Are indoor plants adapted to get rid formaldehyde, Sipin, Elly Lorreta

one of the noxious wastes commonly found at home 002348-019

nowadays?

Transparent chamber containing plants

Mass of formalin + 50ml beaker in each transparent chamber ± 0.01g

8 days

10 days

12 days

14 days

1st

2nd

3rd

1st

2nd

3rd

1st

2nd

3rd

1st

2nd

3rd

Boston fern (N. exaltata)

46.010

46.030

46.040

45.480

45.480

45.470

45.210

45.220

45.220

44.950

44.960

44.980

Janet Craig (D. deremensis)

45.520

45.530

45.530

45.030

45.030

45.020

44.960

44.960

44.920

44.580

44.590

44.580

Florist’s mum (C. morifolium)

45.550

45.550

45.560

45.220

45.210

45.220

44.940

44.940

44.950

44.130

44.130

44.140

Kimberly queen fern (N. obliterata)

45.500

45.510

45.510

45.320

45.350

45.350

44.980

44.980

44.990

44.220

44.230

44.230

Snake plant (S. trifasciata)

45.890

45.900

45.890

45.530

45.530

45.530

45.140

45.140

45.120

44.970

44.960

44.970

Himalayan Balsam(I. glandulifera)

46.680

46.680

46.680

46.340

46.340

46.320

46.290

46.290

47.300

46.250

46.240

46.250

10

Are indoor plants adapted to get rid formaldehyde, Sipin, Elly Lorreta one of the noxious wastes commonly found at home 002348-019 nowadays?

Transparent chamber

containing plants

Change in colour of pH paper

2 days

4 days

6 days

8 days

10 days

12 days

14 days

Boston fern (N. exaltata)

Green leaves

Green leaves

Green leaves

Green leaves

Green leaves

Green leaves

Green leaves

Janet Craig (D. deremensis)

Green leaves

Green leaves

Green leaves

Green leaves

Green leaves

Yellow leaves

Brown Leaves

Florist’s mum (C.morifolium)

Green leaves

Green leaves

Green leaves

Wilted flowers

Wilted flowers

Yellow leaves

Yellow leaves

K. queen fern (N. obliterata)

Green leaves

Green leaves

Green leaves

Green leaves

Yellow leaves

Yellow leaves

Yellow leaves

Snake plant (S. trifasciata)

Green leaves

Green leaves

Green leaves

Green leaves

Green leaves

Green leaves

Green leaves

H. Balsam (I. glandulifera)

Green leaves

Green leaves

Yellow leaves

Yellow leaves

Yellow leaves

Brown leaves

Brown leaves

TABLE 3: DAILY CONDITION OF PLANTS IN THE TRANSPARENT CHAMBERS IN 14 DAYS

Note: Only Florist’s mum (C.morifolium) in this experiment has flowers. When the edges of the leaves becoming brown or yellow, it is indicated as having brown leaves or yellow leaves. The font in italic form indicates the adverse change onto the plants.

10

Are indoor plants adapted to get rid formaldehyde, Sipin, Elly Lorreta one of the noxious wastes commonly found at home 002348-019 nowadays?

TABLE 4: CHANGE IN COLOUR OF pH PAPER WHEN pH OF FORMALIN FOR A DURATION OF TWO WEEKS

Transparent chamber

containing plants

Change in colour of pH paper

2 days

4 days

6 days

8 days

10 days

12 days

14 days

Boston fern (N. exaltata )

Light orange

Light orange

Light orange

Light orange

Light orange

Light orange

Light orange

Janet Craig (D. deremensis)

Light orange

Light orange

Light orange

Light orange

Light orange

Light orange

Light orange

Florist’s mum (C. morifolium)

Light orange

Light orange

Light orange

Light orange

Light orange

Light orange

Light orange

K. queen fern (N. obliterata)

Light orange

Light orange

Light orange

Light orange

Light orange

Light orange

Light orange

Snake plant (S. trifasciata)

Light orange

Light orange

Light orange

Light orange

Light orange

Light orange

Light orange

H. Balsam (I. glandulifera)

Light orange

Light orange

Light orange

Light orange

Light orange

Light orange

Light orange

Note: The original colour of the pH paper is light yellow in colour

10

Are indoor plants adapted to get rid formaldehyde, Sipin, Elly Lorreta one of the noxious wastes commonly found at home 002348-019 nowadays?

7.0 Data processing

7.1 pH difference of formalin

I discover that there are some changes in pH of the formalin in the transparent chamber. The following table shows the total difference in the final and the initial pH of the formalin in each transparent chamber.

TABLE 5: DIFFERENCE IN pH OF FORMALIN IN EACH TRANSPARENT CHAMBER

Transparent chamber containing plants

Final pH

Initial pH

Difference in pH

Boston fern (N. exaltata)

4.310

3.510

0.800

Janet Craig (D. deremensis)

4.430

3.510

0.920

Florist’s mum (C. morifolium)

4.620

3.510

1.110

Kimberly queen fern (N. obliterate)

4.110

3.510

0.600

Snake plant (S. trifasciata)

4.030

3.510

0.520

Himalayan Balsam (I. glandulifera)

3.350

3.510

0.160

Note: The method to calculate the pH of formalin in chamber containing Himalayan Balsam is inverted, since the pH value decreased so that negative value can be ignored.

7.2 Data for mean mass of formalin

The following table shows the average mass of formalin + 50ml beaker for 14 days

TABLE 6: AVERAGE MASS OF FORMALIN + 50ml BEAKER IN EACH CHAMBER CONTAINING DIFFERENT PLANTS IN 14 DAYS

Transparent chamber containing plants

Average mass of formalin+50ml beaker in each chamber ± 0.01g

Day 2

Day 4

Day 6

Day 8

Day 10

Day 12

Day 14

Boston fern (N. exaltata)

46.960

46.540

46.220

46.030

45.480

45.220

44.960

Janet Craig (D. deremensis)

46.910

46.520

46.310

45.530

45.030

44.950

44.580

Florist’s mum (C. morifolium)

46.940

46.610

46.350

45.550

45.220

44.540

44.130

K. queen fern (N. obliterate)

46.970

46.630

46.420

45.510

45.340

44.980

44.240

Snake plant (S. trifasciata)

46.910

46.620

46.420

45.890

45.330

45.130

44.970

H. Balsam (I. glandulifera

46.940

46.790

46.720

46.680

46.330

46.290

44.250

Note: The average masses were obtained by totaling up the three mass values in three trials, and divide it into three.

7.3 Graph for the decreasing mass of formalin

In order to get a graph of decrease in mass of formalin from day 0 to day 14, the real mass of formalin is required. Therefore, the table of mass of formalin for a duration of 14 days is made as follows.

The formulation to calculate the mass of formalin in each beaker would be;

Mass of formalin= [(Average mass of formalin+50ml beaker)-

Average mass of 50ml beaker]

TABLE 7: MASS OF FORMALIN IN EVERY 50ml BEAKER CONTAINED IN TRANSPARENT CHAMBER WITH DIFFERENT TYPES OF PLANTS

Transparent chamber containing plants

Mass of formalin ± 0.01g

[(Average mass of formalin+50ml beaker) – Average mass of 50ml beaker]

Day 2

Day 4

Day 6

Day 8

Day 10

Day 12

Day 14

Boston fern (N. exaltata)

10.170

9.750

9.430

9.240

8.690

8.430

8.170

Janet Craig (D. deremensis)

10.120

9.730

9.520

8.740

8.240

8.160

7.790

Florist’s mum (C. morifolium)

10.150

9.820

9.560

8.760

8.430

8.150

7.340

K. queen fern (N. obliterate)

10.180

9.840

9.630

8.760

8.430

8.150

7.450

Snake plant (S. trifasciata)

10.120

9.830

9.630

9.100

8.540

8.340

8.180

H. Balsam (I. glandulifera

10.150

10.000

9.930

9.890

9.540

9.500

9.460

Note: The average mass of one 50ml beaker is 36.79 ± 0.1g. This value was used to calculate the mass above.

The bar graph of decrease in mass of the formalin against number of days for each beaker containing formalin in every transparent chamber is as follows;

graph 1: decrease in mass of the formalin against number of days for each beaker containing formalin in every transparent chamber

Note: The graph shows quite obvious inclination of mass of formalin in all chambers except for the H. Balsam (I. glandulifera)

7.4 Mass and percentage of formalin absorbed

The initial average mass of the 10ml formalin in the 50ml beaker is 46.980 ± 0.01g and the average mass of the 50ml beaker alone is 36.790 ± 0.01g making the mass of the 10.000 ± 0.1 ml formalin poured in to be 10.190 ± 0.01g. From the data, there is a decreasing pattern of the mass of the formalin in the 50ml beaker. The percentage of decrease in mass of the 10.000 ± 0.1 ml formalin in 14 days of time in respective transparent chamber of plants can be determined. Before that, the mass of formalin absorbed in all the 6 transparent chambers must be d up. Calculation is as follows;

TABLE 8: MASS OF FORMALIN ABSORBED BY PLANTS IN EACH CHAMBER

Name of plants in each chamber

Mass of formalin absorbed

[Initial mass (10.190)- Mass on the14th day] ± 0.01g

Boston fern (N. exaltata)

2.020

Janet Craig (D. deremensis)

2.400

Florist’s mum (C. morifolium)

2.850

Kimberly queen fern (N. obliterate)

2.740

Snake plant (S. trifasciata)

2.010

H. Balsam (I. glandulifera

0.730

Note: The mass of formalin absorbed by plants in each chamber is referring to the decrease in mass of formalin throughout the 12 days duration.

It is possible to calculate the percentage of decrease in mass of formalin absorbed by using the formulation below. The table below shows the percentage in respective 50ml beaker of formalin in all 6 chambers;

Percentage of decrease in = Mass of formalin absorbed x 100%

mass of formalin Initial mass of formalin

TABLE 9: PERCENTAGE DECREASE IN MASS OF FORMALIN IN THE 50ml BEAKER IN RESPECTIVE TRANSPARENT CHAMBER

Transparent chamber containing plants

Percentage of decrease in mass of formalin absorbed

Percentage of decrease in mass of formalin (%)

Boston fern (N. exaltata)

2.020/10.190 x 100

19.820

Janet Craig (D. deremensis)

2.400/10.190 x 100

23.550

Florist’s mum (C. morifolium)

2.850/10.190 x 100

27.970

Kimberly queen fern (N. obliterate)

2.740/10.190 x 100

26.890

Snake plant (S. trifasciata)

2.010/10.190 x 100

19.730

Himalayan Balsam (I. glandulifera)

0.730/10.190 x 100

7.160

Note: The comparison of decrease in mass of formalin in beaker is based on the initial mass of formalin in the beaker.

The greater the percentage of decrease in masses of formalin, the better the quality of air in the chamber, the better formalin absorber would the plant be. The following diagram shows the ascending order of the quality of plant as formalin absorber.

Himalayan Balsam (I. glandulifera)

Snake plant (S. trifasciata)

Boston fern (N. exaltata)

Janet Craig (D. deremensis)

Kimberly queen fern (N. obliterate)

Florist’s mum (C. morifolium)

7.5 Calculation for mean, standard deviation and T-test

TABLE 10 : TABLE OF MEAN AND STANDARD DEVIATION FOR EVERY PLANTS CHOSEN

Mass

± 0.01g

 

Plants

Boston fern (N. exaltata)

Janet Craig (D. deremensis)

Florist’s mum (C. morifolium)

Kimberly queen fern (N. obliterata)

Snake plant (S. trifasciata)

Himalayan Balsam (I. glandulifera)

1st trial

2.000

2.330

2.810

2.000

1.950

0.690

2nd trial

2.000

2.320

2.810

2.740

1.950

0.700

3rd trial

1.980

2.330

2.810

2.740

1.940

0.680

Mean

1.993

2.327

2.810

2.493

1.947

0.690

Std. Dev

0.009

0.005

0.000

0.349

0.005

0.008

Note: The mean was determined by getting the difference of mass of formalin between 14th day with the 0 day; initial mass.

The formulation to calculate t-test is as follows;

t-value =_____difference in mean___

difference of standard error

TABLE 11: TABLE OF T-VALUE FOR THE COMPARISON OF MASS DECREASE MEAN BETWEEN BOSTON FERN (N. exaltata) AND JANET CRAIG (D. deremensis)

Mass

± 0.01g

Plants

Boston fern (N. exaltata)

Janet Craig (D. deremensis)

Difference between Boston fern and Janet Craig

1 trial

2.000

2.330

0.330

2 trial

2.000

2.320

0.320

3 trial

1.980

2.330

0.340

Mean

1.993

2.327

0.330

Std. Dev

0.009

0.005

0.008

Std. Error

1.151

1.343

0.191

Degree of freedom

2.000

Critical value at 5% level

4.300

t-value

1.728

Null Hypothesis: There is no significance difference for decrease in mass between Boston fern (N. exaltata) and Janet Craig (D. deremensis)

| t | = 1.728 < 4.300

Thus, null hypothesis is rejected. The mean difference is not significant

TABLE 12: TABLE OF T-VALUE FOR THE COMPARISON OF MASS DECREASE MEAN BETWEEN BOSTON FERN (N. exaltata) AND FLORIST’S MUM (C. morifolium)

Null Hypothesis: There is no significance difference for decrease in mass between Boston fern (N. exaltata) and Florist’s mum (C. morifolium)

Mass

± 0.01g

Plants

Boston fern (N. exaltata)

Florist’s mum (C. morifolium)

Difference between Boston fern and Florist’s mum


To export a reference to this article please select a referencing stye below:

Reference Copied to Clipboard.
Reference Copied to Clipboard.
Reference Copied to Clipboard.
Reference Copied to Clipboard.
Reference Copied to Clipboard.
Reference Copied to Clipboard.
Reference Copied to Clipboard.

Request Removal

If you are the original writer of this dissertation and no longer wish to have the dissertation published on the UK Essays website then please click on the link below to request removal:


More from UK Essays