0115 966 7955 Today's Opening Times 10:00 - 20:00 (BST)
Place an Order
Instant price

Struggling with your work?

Get it right the first time & learn smarter today

Place an Order
Banner ad for Viper plagiarism checker

Analysis of Vietnam’s Energy Supply and Production

Disclaimer: This work has been submitted by a student. This is not an example of the work written by our professional academic writers. You can view samples of our professional work here.

Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of UK Essays.

Published: Tue, 20 Feb 2018

Vietnam’s economy has expanded rapidly in recent years, with its real gross domestic product (GDP) growing 7.7% in 2004 and 8.4% in 2005. Growth is forecast at 8.0% in 2006. Vietnam has had Normal Trade Relations status with the United States since late 2001, with 2002 marking the first time Vietnam shipped more goods to the United States than to Japan. Despite rising exports, Vietnam currently runs a slight trade deficit, but is projected to begin having trade surpluses by 2007.

Much of Vietnam’s large rural population relies heavily on non-commercial biomass energy sources such as wood, dung, and rice husks. As a result, Vietnam’s per capita commercial energy consumption ranks among the lowest in Asia. The country’s commercial energy consumption is predicted to rise in coming years, primarily due to increases in the use of natural gas.

Vietnam claims ownership of a portion of the potentially hydrocarbon-rich Spratly Islands, as do the Philippines, Brunei, Malaysia, China, and Taiwan. Vietnam, China, and the Philippines agreed in March 2005 to conduct a joint seismic survey for potential oil and natural gas reserves in a portion of the disputed area. Vietnam also claims the Paracel Islands, which China first occupied in 1974.

Oil:

Vietnam’s Oil Production and Consumption, 1980-2005. (Source: EIA, International Energy Annual 2003, internal EIA estimates.).

Enlarge:

Vietnam’s Oil Production and Consumption, 1980-2005. (Source: EIA, International Energy Annual 2003, internal EIA estimates.)

Vietnam has 600 million barrels of proven oil reserves, according to data from Oil and Gas Journal, but that total is likely to increase as exploration continues. Crude oil production averaged 370,000 barrels per day (bbl/d) in 2005, down somewhat from the 403,000 bbl/d level achieved in 2004. Bach Ho (White Tiger), Rang Dong (Dawn), Hang Ngoc, Dai Hung (Big Bear), and Su Tu Den (Ruby) are the largest oil producing fields in the country. Although it is a significant oil producer, Vietnam remains reliant on imports of petroleum products due to a lack of refining capacity. Overall, Vietnam had net exports of 111,000 bbl/d of oil in 2005. Most of Vietnam’s crude oil is exported to refiners in Japan, Singapore, and South Korea.

Vietnam’s largest oil producer is Vietsovpetro (VSP), a joint venture (JV) between PetroVietnam and Zarubezhneft of Russia. VSP operates Vietnam’s largest oil field, Bach Ho. Other foreign partners include ConocoPhillips, BP, Petronas, and Talisman Energy.

Following the October 2003 commencement of drilling operations in the Su Tu Den (Black Lion) crude field, PetroVietnam reported increasing production volumes. PetroVietnam’s April 2003 discovery of an oil deposit in Dai Hung, estimated to have a capacity of 6,300 bbl/d, was expected to further increase Vietnamese production. The decline in production overall from 2004 to 2005 was primarily the result of declining production at the Bach Ho field.

The planned development of several new oil fields in coming years is expected to increase Vietnamese production. A new well at Block 15-1’s Su Tu Trang (White Lion) field flowed 8,682 bbl/d in early 2004 and is scheduled to be developed by 2008. In October 2004, Japanese oil companies Nippon Oil Exploration (35 percent interest), Idemitsu Kosan (35 percent), and Teikoku Oil (30 percent) announced plans to fund the development of Blocks 05.1b and 05.1c in the Nam Con Son Basin. Two months later, the Korean National Oil Corporation (KNOC), along with several Korean partners, finalized terms for the $300 million development of Block 11-2, which includes the Flying Orchid Field. PetroVietnam has a 25 percent interest in the joint venture.

Exploration in Vietnam continues to yield new discoveries. In 2002, large oil and gas deposits were discovered in the Ca Ngu Vang (Golden Tuna) and Voi Trang (White Elephant) fields. SOCO Vietnam estimates that its Ca Ngu Vang well may contain up to 250 million barrels of oil. In July 2004, VSP discovered new stocks of oil in its Dragon field. Three months later, a joint venture comprised of American Technologies, Petronas, Singapore Petroleum, and PetroVietnam announced a 100-million-barrel oil discovery off Vietnam’s northeast coast.

In September 2004, the Vietnamese government offered nine exploration blocks in the Phu Khanh basin off its southern coast. In November 2004, Japanese oil companies Nippon Oil Exploration, Idemitsu Kosan, and Teikoku Oil signed an agreement to explore in two offshore blocks southeast of Ho Chi Minh City. They plan to drill a test well in 2006 and complete exploration by 2007. In December 2004, Talisman Energy was awarded the right to conduct exploration in the Cuu Long Basin, and received additional acreage in an adjacent area in April 2005. ONGC of India was awarded drilling rights in the deepwater Block 127 in the Phu Khanh Basinoff Vietnam’s central coast in October 2005. ChevronTexaco also received acreage in the Phu Khanh Basin in the most recent round of awards, with an award for Block 122 in October 2005.

PetroVietnam’s storage and transportation division, Petrolimex, recently completed a new oil storage facility in the central Khanh Hoa province. The depot is largest in the country, with a total storage capacity of 3.68 million barrels.

Refining:

Vietnam is in the process of building its first refinery. The $1.5 billion Dung Quat Refinery, located in Quang Ngai province, will have a crude distillation capacity of approximately 140,000 bbl/d. After several years of delays in financing the project, construction finally began in November 2005. Commercial operation of the refinery is expected to begin in early 2009. Vietnam’s distribution infrastructure is discontinuous, with the north and south of the country functioning largely as separate markets. Completion of the Dung Quat Refinery, located in the center of the country, should lead to greater interaction between the regions.

A second refinery project is under consideration at Nghi Son, north of Hanoi in the Thanh Hoa province. The Vietnamese government has estimated the 150,000 bbl/d plant will cost $3 billion. In August 2004, Mitsubishi Corporation agreed to participate in building Nghi Son for completion in 2010. In December 2004, Vietnam contracted the International Business Company (IBC) of the British Virgin Islands to conduct a feasibility study for a third oil refinery, to be located at Vung Ro in the southern Phu Yen province. The Vietnamese government hopes to complete the refinery within 12 years.

Natural Gas:

Vietnam’s Oil Production and Consumption, 1980-2005. (Source: EIA, International Energy Annual 2003.).

Enlarge:

Vietnam’s Oil Production and Consumption, 1980-2005. (Source: EIA, International Energy Annual 2003.).

Vietnam has proven gas reserves of 6.8 trillion cubic feet (Tcf), according to Oil and Gas Journal. Vietnam’s natural gas production and consumption have been rising rapidly since the late 1990s, with further increases expected as additional fields come onstream. Natural gas is currently produced entirely for domestic consumption. The Cuu Long basin offshore from the Mekong Delta in southern Vietnam, a source of associated gas from oil production, is the largest Vietnamese natural gas production area.

Only two fields in Vietnam have been developed specifically for their natural gas potential: Tien Hai, with a potential output of 1.76 million cubic feet per day (Mmcf/d); and Lan Tay/Lan Do of Nam Con Son, which began producing over 5 Mmcf/d in 2002. In the Nam Con Son Basin, a $565 million, 230-mile pipeline was completed in June 2002 connecting the Lan Tay and Lan Do fields to the mainland at Vung Tau. The Nam Con Son project consists of five subsea wells linked to a production platform and a pipeline leading to an onshore treatment plant. Gas is piped to three generating plants at the Phu My industrial complex, where electricity is provided primarily to areas surrounding Ho Chi Minh City. In December 2004, the Vietnamese government announced that output from Nam Con Son was expected to reach 88 billion cubic feet (Bcf), exceeding planned production by 90%. The project currently supplies the Phu My 1, Phu My 3, Phu My 2.1 power plants and the extended Phu My 2.1 plant. Phu My 2.2 will begin using output from the field soon thereafter.

In December 2002, a consortium headed by Korea National Oil Corporation (KNOC) signed an agreement to install facilities to pump and supply 130 Mmcf/d of natural gas to Vietnam. The natural gas, located in the Rong Doi and Rong Doi Tay fields on Block 11-2 of the Nam Con Son Basin, is sold to PetroVietnam under a 23-year contract. PetroVietnam resells most this volume to Electricity of Vietnam (EVN). Production at the fields began in mid-2005. In December 2004, KNOC and PetroVietnam signed agreements to further exploit natural gas in both Blocks 11 and 12. Construction of an additional pipeline to bring ashore natural gas from block 11 began in October 2005, and is scheduled for completion in October 2006.

The Su Tu Den and Rang Dong oil fields, both of which have considerable Vietnamese reserves of associated natural gas, are located near the 62-mile pipeline from the Bach Ho field. An estimated 60 Mmcf/d of gas from the fields is earmarked for consumption in power plants in southern Vietnam.

Both TotalFinaElf and ChevronTexaco (originally Unocal) have found natural gas in exploratory drilling of the Malay basin. Additionally, Talisman Energy has found natural gas at the Cai Nuoc field in block 46. The discovery is close to block PM-3-CAA, which straddles the maritime border with Malaysia, and is expected to contain up to 100 Bcf of recoverable gas reserves.

A contract was awarded to McDermott International in March 2006 for construction of a 200-mile pipeline, which will transport natural gas from the PM3-CAA block to Ca Mau province in southern Vietnam. It is scheduled for completion in 2007.

In December 2004, PetroVietnam announced that it was reconsidering the $70 million Phu My gas pipeline project from Phu My to Nhon Trach due to increased expenses associated with land costs in compensation areas. The pipeline was initially planned to transport associated gas from the Bach Ho and Rong fields for power generation.

Coal:

Vietnam contains coal reserves estimated at 165 million short tons (Mmst), the majority of which is anthracite. Production has increased dramatically over the last decade, with Vietnam producing over 18 Mmst in 2003. As a result, Vietnam exported a record 7 Mmst of coal, primarily to Japan and China, in 2003. Although Vietnam has historically relied on hydropower for electricity, it has recently promoted the construction of coal-fired power plants. Vinocoal plans to build eight coal-fueled thermal power plants with a total capacity of 2,900 megawatts (MW) by 2010. Six are currently in various stages of planning and construction. In December 2004, the Vietnamese government approved Vinacoal’s proposal to invest in a 200-MW, coal-fired thermal power plant in the Son Dong district. The plant is scheduled to begin operation in 2007. Coal-fired power plants are expected to eventually account for 25% of Vietnam’s total electricity production. The Vietnamese government estimates that 10.2 Mmst of coal is needed per year to meet increasing domestic demand, projected at 20,000 MW by 2010.

Vietnam continues to exploit new coal reserves within its borders. In March 2003, a significant coal bed was discovered in the Red River Delta region of northern Vietnam. Vinacoal plans to use the reserve for thermal power plants. In October 2004, Vinacoal entered talks with China’s Fujian Province Coal Industry Corporation to jointly exploit the Bac Coc Sau mine in the Quang Ninh province.

Electricity:

Vietnam’s Electricity Generation, 1980-2003. (Source: EIA, International Energy Annual 2003.).

Enlarge:

Vietnam’s Electricity Generation, 1980-2003. (Source: EIA, International Energy Annual 2003.).

Although Vietnam’s per capita electricity consumption is among the lowest in Asia, demand has risen in recent years, straining the country’s limited generating capacity. Rapid commercial sector growth, population migration to major cities, and elevated living standards have all contributed to a growing demand for electricity. In 2003, Vietnam had a total electric generating capacity of 8.8 gigawatts (GW) and generated 39.7 billion kilowatt-hours (kWh) of electricity, of which 52 percent was hydropower.

Electricity demand in Vietnam is forecast to grow 15 percent per year until 2010. Vietnam currently buys power from China to prevent shortages in the north, and plans to begin purchasing from Laos in 2008.

The majority of thermal electricity generation in Vietnam depends on coal-fired plants, though natural gas use is expanding. EVN’s Pha Lai is the largest coal-fired power project in Vietnam, with the second of two 300-MW units coming into service in 2003. In order to meet increased demand, construction or expansion is planned for 32 power stations (7,547 MW) before 2010. The state power company, Eléctricité of Vietnam (EVN), plans to commission 16 hydropower plants by 2010 and increased capacity at the Uong Bi coal-fired plant to 400 MW in 2005. Vinacoal also has plans to construct eight additional coal-fired power plants.

Vietnam currently has five hydroelectric expansions underway. The country’s Son La project, which began construction in late 2005, is anticipated to have a generating capacity of 2,400 megawatts (MW) by 2012, will be the largest hydroelectric project in Vietnam when completed. In September 2004, construction began on the Ban Ve hydroelectric power plant, expected to begin operations in 2008. EVN began work on four additional hydroelectric projects in late 2004. The Dong Nai 3 and Dong Nai 4, both located in the Central Highlands region, are expected to be completed within four years and to provide approximately 520 MW of generating capacity. In December 2004, EVN began construction of the Se San 4 hydropower plant in the central highlands provinces of Gia Lai and Kon Tum. The plant is anticipated to have a capacity of 330 MW and to generate 1,390 million kWh per year. Vietnam also plans to build three additional plants in the region before 2010.

In March 2004, EVN announced plans to spend $1.3 billion to build and refurbish power plants with a combined capacity of 1,510 MW. The projects include the combined cycle power plant Phu My 2.1, the hydroelectric facility Can Don, the Phu My 3 and Phu My 4 thermal plants, and Na Duong. Additional projects include the Song Ba Ha, Bac Binh, Se San 4, Dong Nai 3 and Dong Nai 4 hydrostations, the Quang Ninh, Ninh Binh extension, and the O Mon 600-MW thermal plant.

The development of natural gas-fired plants in the Phu My complex of the Ba Ria-Vung Tau province has helped to offset Vietnam’s heavy reliance on hydropower, which can be vulnerable to disruption when monsoon rainfall is unusually low. In March 2003, the 720-MW Phu My 3 power plant commenced operations. The $450 million plant, owned by a consortium led by UK’s BP, was Vietnam’s first foreign-invested, build-operate-transfer (BOT) project. EVN has contracted to purchase the output under a 20-year power purchase agreement. Mitsubishi received an award in February 2006 for the construction of a 330-MW natural gas-fired power plant in the southern Mekong delta. The plant will come online in early 2009, running initially on fuel oil, and switching to natural gas when pipeline infrastructure is completed.

More foreign companies are beginning to enter the growing Vietnamese power market in the form of Build-Operate-Transfer (BOT) projects. EVN and a consortium including Tokyo Electric Power (TEPCO), Sumitomo, and Eléctricité de France (EdF) began BOT construction of the Mekong Delta’s 715-MW Phu My 2-2 in January 2003. The plant is fueled by gas from Nam Con Son Basin.

EVN plans to develop a national electricity grid by 2020 by patching together several regional grids. The country’s distribution infrastructure is poorly maintained, but has benefited from recent improvements. A North-South power cable transmits electricity from Vietnam’s largest generator, the Hoa Binh hydropower plant in the North, to large population centers in the South, linking the country into one electricity grid and helping alleviate electricity shortages in Ho Chi Minh City. The $56 million project was funded by the World Bank. Vietnam is considering the construction of a 500-KV, 188-mile power line from Pleiku to Danang city at a cost of $130 million. The Vietnamese government has estimated that an additional 9,300 miles of high-voltage transmission lines and 173,600 miles of medium- and low-voltage transmission lines will be necessary to accommodate new capacity by 2010. In September 2004, EVN announced plans to invest $330 million over five years to upgrade transmission lines surrounding Hanoi.

Vietnam plans to complete its first nuclear power plant by 2020 as an alternate means on meeting demand. In December 2004, the Vietnamese Ministry of Science and Technology submitted a pre-feasibility study for the 2,000-megawatt (MW) nuclear plant to the National Assembly.

Fossil Fuels – Coal, Oil and Natural Gas:

Where Fossil Fuels Come From:

There are three major forms of fossil fuels: coal, oil and natural gas. All three were formed many hundreds of millions of years ago before the time of the dinosaurs – hence the name fossil fuels. The age they were formed is called the Carboniferous Period. It was part of the Paleozoic Era. “Carboniferous” gets its name from carbon, the basic element in coal and other fossil fuels.

The Carboniferous Period occurred from about 360 to 286 million years ago. At the time, the land was covered with swamps filled with huge trees, ferns and other large leafy plants, similar to the picture above. The water and seas were filled with algae – the green stuff that forms on a stagnant pool of water. Algae is actually millions of very small plants.

Some deposits of coal can be found during the time of the dinosaurs. For example, thin carbon layers can be found during the late Cretaceous Period (65 million years ago) – the time of Tyrannosaurus Rex. But the main deposits of fossil fuels are from the Carboniferous Period. For more about the various geologic eras, go to www.ucmp.berkeley.edu/help/timeform.html.

As the trees and plants died, they sank to the bottom of the swamps of oceans. They formed layers of a spongy material called peat. Over many hundreds of years, the peat was covered by sand and clay and other minerals, which turned into a type of rock called sedimentary.

More and more rock piled on top of more rock, and it weighed more and more. It began to press down on the peat. The peat was squeezed and squeezed until the water came out of it and it eventually, over millions of years, it turned into coal, oil or petroleum, and natural gas.

Coal:

Coal is a hard, black colored rock-like substance. It is made up of carbon, hydrogen, oxygen, nitrogen and varying amounts of sulphur. There are three main types of coal – anthracite, bituminous and lignite. Anthracite coal is the hardest and has more carbon, which gives it a higher energy content. Lignite is the softest and is low in carbon but high in hydrogen and oxygen content. Bituminous is in between. Today, the precursor to coal – peat – is still found in many countries and is also used as an energy source.

The earliest known use of coal was in China. Coal from the Fu-shun mine in northeastern China may have been used to smelt copper as early as 3,000 years ago. The Chinese thought coal was a stone that could burn.

Coal is found in many of the lower 48 states of U.S. and throughout the rest of the world. Coal is mined out of the ground using various methods. Some coal mines are dug by sinking vertical or horizontal shafts deep under ground, and coal miners travel by elevators or trains deep under ground to dig the coal. Other coal is mined in strip mines where huge steam shovels strip away the top layers above the coal. The layers are then restored after the coal is taken away.

The coal is then shipped by train and boats and even in pipelines. In pipelines, the coal is ground up and mixed with water to make what’s called a slurry. This is then pumped many miles through pipelines. At the other end, the coal is used to fuel power plants and other factories.

Oil or Petroleum:

Oil is another fossil fuel. It was also formed more than 300 million years ago. Some scientists say that tiny diatoms are the source of oil. Diatoms are sea creatures the Picture of oil formationsize of a pin head. They do one thing just like plants; they can convert sunlight directly into stored energy.

Oil has been used for more than 5,000-6,000 years. The ancient Sumerians, Assyrians and Babylonians used crude oil and asphalt (“pitch”) collected from large seeps at Tuttul (modern-day Hit) on the Euphrates River. A seep is a place on the ground where the oil leaks up from below ground. The ancient Egyptians, used liquid oil as a medicine for wounds, and oil has been used in lamps to provide light.

The Dead Sea, near the modern Country of Israel, used to be called Lake Asphaltites. The word asphalt was derived is from that term because of the lumps of gooey petroleum that were washed up on the lake shores from underwater seeps.

In North America, Native Americans used blankets to skim oil off the surface of streams and lakes. They used oil as medicine and to make canoes water-proof. During the Revolutionary War, Native Americans taught George Washington’s troops how to treat frostbite with oil.

As our country grew, the demand for oil continued to increase as a fuel for lamps. Petroleum oil began to replace whale oil in lamps because the price for whale oil was very high. During this time, most petroleum oil came from distilling coal into a liquid or by skimming it off of lakes – just as the Native Americans did.

Then on August 27, 1859, Edwin L. Drake (the man standing on the right in the black and white picture to the right), struck liquid oil at his well near Titusville, Pennsylvania. He found oil under ground and a way that could pump it to the surface. The well pumped the oil into barrels made out of wood. This method of drilling for oil is still being used today all over the world in areas where oil can be found below the surface.

Oil and natural gas are found under ground between folds of rock and in areas of rock that are porous and contain the oils within the rock itself. The folds of rock were formed as the earth shifts and moves. It’s similar to how a small, throw carpet will bunch up in places on the floor.

To find oil and natural gas, companies drill through the earth to the deposits deep below the surface. The oil and natural gas are then pumped from below the ground by oil rigs (like in the picture). They then usually travel through pipelines or by ship.

Oil is found in 18 of the 58 counties in California. Kern County, the County where Bakersfield is found, is one of the largest oil production places in the country. But we only get one-half of our oil from California wells. The rest comes from Alaska, and an increasing amount comes from other countries. In the entire U.S., more than 50 percent of all the oil we use comes from outside the country…most of it from the Middle East.

Oil is brought to California by large tanker ships. The petroleum or crude oil must be changed or refined into other products before it can be used.

Refineries:

Oil is stored in large tanks until it is sent to various places to be used. At oil refineries, crude oil is split into various types of products by heating the thick black oil.

Oil is made into many different products – fertilizers for farms, the clothes you wear, the toothbrush you use, the plastic bottle that holds your milk, the plastic pen that you write with. They all came from oil. There are thousands of other products that come from oil. Almost all plastic comes originally from oil. Can you think of some other things made from oil?

The products include gasoline, diesel fuel, aviation or jet fuel, home heating oil, oil for ships and oil to burn in power plants to make electricity. Here’s what a barrel of crude oil can make.

In California, 74 percent of our oil is used for transportation — cars, planes, trucks, buses and motorcycles. We’ll learn more about transportation energy in Chapter 18.

Natural Gas:

Sometime between 6,000 to 2,000 years BCE (Before the Common Era), the first discoveries of natural gas seeps were made in Iran. Many early writers described the natural petroleum seeps in the Middle East, especially in the Baku region of what is now Azerbaijan. The gas seeps, probably first ignited by lightning, provided the fuel for the “eternal fires” of the fire-worshiping religion of the ancient Persians.

Natural gas is lighter than air. Natural gas is mostly made up of a gas called methane. Methane is a simple chemical compound that is made up of carbon and hydrogen atoms. It’s chemical formula is CH4 – one atom of carbon along with four atoms hydrogen. This gas is highly flammable.

Natural gas is usually found near petroleum underground. It is pumped from below ground and travels in pipelines to storage areas. The next chapter looks at that pipeline system. Natural gas usually has no odor and you can’t see it. Before it is sent to the pipelines and storage tanks, it is mixed with a chemical that gives a strong odor. The odor smells almost like rotten eggs. The odor makes it easy to smell if there is a leak.

Energy Safety Note! If you smell that rotten egg smell in your house, tell your folks and get out of the house quickly. Don’t turn on any lights or other electrical devices. A spark from a light switch can ignite the gas very easily. Go to a neighbor’s house and call 9-1-1 for emergency help.

Saving Fossil Fuels:

Fossil fuels take millions of years to make. We are using up the fuels that were made more than 300 million years ago before the time of the dinosaurs. Once they are gone they are gone. So, it’s best to not waste fossil fuels. They are not renewable; they can’t really be made again. We can save fossil fuels by conserving energy.

Natural Gas Distribution System:

We learned in Chapter 8 that natural gas is a fossil fuel. It is a gaseous molecule that’s made up of two atoms – one carbon atom combined with four hydrogen atom. It’s chemical formula is CH4. The picture on the right is a model of what the molecule could look like. Don’t confuse natural gas with “gasoline,” which we call “gas” for short. Like oil, natural gas is found under ground and under the ocean floor. Wells are drilled to tap into natural gas reservoirs just like drilling for oil. Once a drill has hit an area that contains natural gas, it can be brought to the surface through pipes. The natural gas has to get from the wells to us. To do that, there is a huge network of pipelines that brings natural gas from the gas fields to us. Some of these pipes are two feet wide. Natural gas is sent in larger pipelines to power plants to make electricity or to factories because they use lots of gas. Bakeries use natural gas to heat ovens to bake bread, pies, pastries and cookies. Other businesses use natural gas for heating their buildings or heating water.

From larger pipelines, the gas goes through smaller and smaller pipes to your neighborhood.

In businesses and in your home, the natural gas must first pass through a meter, which measures the amount of fuel going into the building. A gas company worker reads the meter and the company will charge you for the amount of natural gas you used. In some homes, natural gas is used for cooking, heating water and heating the house in a furnace. In rural areas, where there are no natural gas pipelines, propane (another form of gas that’s often made when oil is refined) or bottled gas is used instead of natural gas. Propane is also called LPG, or liquefied petroleum gas, is made up of methane and a mixture with other gases like butane. Propane turns to a liquid when it is placed under slight pressure. For regular natural gas to turn into a liquid, it has to be made very, very cold. Cars and trucks can also use natural gas as a transportation fuel, but they must carry special cylinder-like tanks to hold the fuel.

When natural gas is burned to make heat or burned in a car’s engine, it burns very cleanly. When you combine natural gas with oxygen (the process of combustion), you produce carbon dioxide and water vapor; plus the energy that’s released in heat and light. Some impurities are contained in all natural gas. These include sulphur and butane and other chemicals. When burned, those impurities can create air pollution. The amount of pollution from natural gas is less than burning a more “complex” fuel like gasoline. Natural gas-powered cars are more than 90 percent cleaner than a gasoline-powered car.

That’s why many people feel natural gas would be a good fuel for cars because it burns cleanly.

Biomass Energy:

Biomass is matter usually thought of as garbage. Some of it is just stuff lying around — dead trees, tree branches, yard clippings, left-over crops, wood chips (like in the picture to the right), and bark and sawdust from lumber mills. It can even include used tires and livestock manure.

Your trash, paper products that can’t be recycled into other paper products, and other household waste are normally sent to the dump. Your trash contains some types of biomass that can be reused. Recycling biomass for fuel and other uses cuts down on the need for “landfills” to hold garbage. This stuff nobody seems to want can be used to produce electricity, heat, compost material or fuels. Composting material is decayed plant or food products mixed together in a compost pile and spread to help plants grow.

California produces more than 60 million bone dry tons of biomass each year. Of this total, five million bone dry tons is now burned to make electricity. This is biomass from lumber mill wastes, urban wood waste, forest and agricultural residues and other feed stocks.

If all of it was used, the 60 million tons of biomass in California could make close to 2,000 megawatts of electricity for California’s growing population and economy. That’s enough energy to make electricity for about two million homes!

How biomass works is very simple. The waste wood, tree branches and other scraps are gathered together in big trucks. The trucks bring the waste from factories and from farms to a biomass power plant. Here the biomass is dumped into huge hoppers. This is then fed into a furnace where it is burned. The heat is used to boil water in the boiler, and the energy in the steam is used to turn turbines and generators .

Biomass can also be tapped right at the landfill with burning waster products. When garbage decomposes, it gives off methane gas. You’ll remember in chapters 8 and 9 that natural gas is made up of methane. Pipelines are put into the landfills and the methane gas can be collected. It is then used in power plants to make electricity. This type of biomass is called landfill gas.

A similar thing can be done at animal feed lots. In places where lots of animals are raised, the animals – like cattle, cows and even chickens – produce manure. When manure decomposes, it also gives off methane gas similar to garbage. This gas can be burned right at the farm to make energy to run the farm.

Using biomass can help reduce global warming compared to a fossil fuel-powered plant. Plants use and store carbon dioxide (CO2) when they grow. CO2 stored in the plant is released when th


To export a reference to this article please select a referencing stye below:

Reference Copied to Clipboard.
Reference Copied to Clipboard.
Reference Copied to Clipboard.
Reference Copied to Clipboard.
Reference Copied to Clipboard.
Reference Copied to Clipboard.
Reference Copied to Clipboard.

Request Removal

If you are the original writer of this dissertation and no longer wish to have the dissertation published on the UK Essays website then please click on the link below to request removal:


More from UK Essays